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Introduction

Introduction

I Last week we looked at multiple qubits and Entanglement

I Today, we are going to look at some simple quantum
algorithms:

I Superdense Coding

I Quantum Teleportation

I Deutsch’s algorithm

I Deutsch-Jozsa
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Introduction

Bell states

I Quantum Teleportation and Superdense coding make use of
Bell states, and the Bell measurement

I We only looked at one Bell state last week, but there are four
of them:

|Ψ00〉 =
1√
2

(|00〉+ |11〉) |Ψ01〉 =
1√
2

(|01〉+ |10〉)

|Ψ10〉 =
1√
2

(|00〉 − |11〉) |Ψ11〉 =
1√
2

(|01〉 − |10〉)

I Just like |00〉 , |01〉 , |10〉 and |11〉 they form an orthonormal
basis in the four dimensional complex Hilbert space

I That means we could describe any 2-qubit state in terms of
the four Bell states...

I and use the Bell states as are measurement basis, instead of
the Computational base states

I However, we don’t need to make things complicated...
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Introduction

Bell measurements

I We’re used to thinking of things in the computational basis

I Instead of measuring in a different basis, we are able to do a
unitary operation that can be thought of as a change of
basis...

I and the measurement we do is still in the computational basis

I The operation that takes the Bell basis into the computational
basis, followed by a measurement of both qubits, is known as
a Bell measurement
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Introduction

Bell measurements

I The following circuit takes the computational basis into the
Bell basis

H •

X

I The inverse of this circuit takes the Bell basis back into the
computational basis...

I Measuring both qubits after this would perform a Bell
measurement

I Entanglement means the Bell states have some interesting
properties

I Being able to change into the Bell basis means we can easily
take advantage of these properties
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Part I

Superdense Coding
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Superdense coding

I If you have a single qubit in an arbitrary state, how much
information can you get from it?

I No matter what unitary operations you do to it, the only
information you can gain is from a measurement...

I A measurement only gives you a single Bit of information
I So, the transfer of a single qubit only transfers a single bit of

information
I However, superdense coding makes use of a Bell state to

transfer two bits of information, whilst only a single qubit
changes hands

I The sender has two classical bits of information, and one
member of a pair of entangled qubits

I The reciever has the other qubit from the entangled pair
I The sender encodes the classical information, and can send it

to the receiver jut by giving them the single qubit they started
with.
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Superdense coding protocol

I The sender and receiver have a single qubit each from the two
qubit state |Ψ00〉

I The sender does a different unitary operation depending on
the Bits that they want to encode...

I for 00 they don’t do anything
I for 01 they do a Pauli-X rotation
I for 10 they do a Pauli-Z rotation
I for 11 they do a Pauli-X rotation and a Pauli-Z rotation

I The sender can now send their qubit to the receiver

I All the receiver has to do is a Bell measurement, and they will
have the two Bits that the sender wanted to send them
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Superdense coding

I Lets look at how this works...

I The sender and receiver share the state |Ψ00〉
I What happens when we do a Pauli-X or Pauli-Z rotation on

the first qubit in this pair?

Pauli − X =

[
0 1
1 0

]
Pauli − Z =

[
1 0
0 −1

]
I Pauli-X has the effect of negating the base states |0〉 and |1〉
I Pauli-Z has the effect of adding a negative (relative) phase to

the |1〉 base state
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Superdense coding

I What happens when we apply the operations for each possible
pair of bits we wish to send?

I For 00 we do nothing, so the two qubits are in the state
|Ψ00〉 = 1√

2
(|00〉+ |11〉)

I For 01 we have Pauli-X applied to the first qubit:
X0 |Ψ00〉 = 1√

2
(|10〉+ |01〉) = 1√

2
(|01〉+ |10〉) = |Ψ01〉

I For 10 we have Pauli-Z applied to the first qubit:
Z0 |Ψ00〉 = 1√

2
(|00〉 − |11〉) = |Ψ10〉

I For 11 we have a Pauli-X and a Pauli-Z applied to the first
qubit: Z0(X0 |Ψ00〉) = Z0 |Ψ01〉 = 1√

2
(|01〉 − |10〉) = |Ψ11〉

I The qubit is then given to the receiver...

I With both qubits in their possesion, the receiver is able to
perform a Bell measurement and extract the original encoded
Bits
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Deriving superdense coding

I It is possible to derive the circuit for superdense coding from a
circuit that simply copies two Bits:

x • x
y • y

|0〉 X |x〉

|0〉 X |y〉

I The double wires represent classical bits

I Currently the sender would require access to both qubits

I Before starting the derivation, lets looks at some equivalences
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Equivalent circuits

I For arbitrary U, and its inverse U−1

U U−1 = (a)

I E.g. Hadamard and Controlled-X are self-inverse (aH) and
(aC )

I

H X H = Z (b)

I

H Z H = X (c)

I (c) is derivable from (aH) and (b)
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Equivalent circuits

I
•

X
= •

H Z H

(d)

I (d) is derivable from (aH) and (c)

I
•

Z
= Z

•
(e)
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Equivalent circuits

I
•

•

X X

=
• •

X • X

X

(f)

I

•

Z •

X

=
•

• Z

X

(g)

I (d), (f), and (g) still hold if the top control wire is a classical
wire
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Equivalent circuits

I

• •

X

X

=
•

• X •

X X

(h)
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Derivation of superdense coding

I

x • x
y • y

|0〉 X |x〉

|0〉 X |y〉
I Using (d):

x • x
y • y

|0〉 H Z H |x〉

|0〉 X |y〉
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Derivation of superdense coding

I Using (aC ):

x • x
y • y

|0〉 H • • Z H |x〉

|0〉 X X X |y〉

I Using (g):

x • x
y • y

|0〉 H • Z • H |x〉

|0〉 X X X |y〉
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Derivation of superdense coding

I Sliding the Hadamard to the front:

x • x
y • y

|0〉 H • Z • H |x〉

|0〉 X X X |y〉

I Using (f):

x • x
y • • y

|0〉 H X • X Z • H |x〉

|0〉 X X |y〉
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Derivation of superdense coding

I The first controlled-X will act as identity:

x • x
y • y

|0〉 H • X Z • H |x〉

|0〉 X X |y〉

I Spreading it all out a little:

x • x
y • y

|0〉 H • X Z • H |x〉

|0〉 X X |y〉

I This is the circuit that describes the superdense coding
protocol that we looked at earlier
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Part II

Quantum Teleportation
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Teleportation

I What is teleportation?
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Quantum Teleportation

I What is quantum teleportation?
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Quantum Teleportation

I Quantum teleportation allows us to transfer the state of an
aribtrary qubit to another qubit

I It makes use of an entangled pair of qubits in order to achieve
this

I It doesn’t break the no-cloning theorem as the state of the
original qubit is lost in the process

I We shall look at teleportation in terms of a sender and a
reciever

I We shall call the sender Alice
I We shall call the reciever Bob

I If Alice and Bob share an entangled pair of qubits, then it is
possible for Alice to teleport Bob an arbitrary qubit using
purely classical communication...

I In fact, only two Bits of classical information need to be sent
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Quantum teleportation

I Lets look at the protocol in more detail
I Alice and Bob have one qubit each from an entangled pair of

qubits in the state |Ψ00〉
I Alice also has a qubit in an arbitrary state α |0〉+ β |1〉 that

she wishes to send to Bob
I However, Alice is only able to send Bob classical information
I Alice can use quantum teleportation to achieve her goal
I Alice must perform a Bell measurement on the two qubits in

her possesion...
I collapsing them into one of the base states |00〉 , |01〉 , |10〉 , or
|11〉

I If Alice sends Bob the classical results of this measurement
(00, 01, 10, or 11) then he is able to reconstruct the original
state α |0〉+ β |1〉 with unitary operations on the single qubit
in his possesion
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Quantum teleportation

I Lets look at the state of the qubits, with subscripts to denote
who they belong to

I The qubit Alice wishes to send is in the arbitrary state
|ψ〉a = α |0〉a + β |1〉a

I The Bell state shared by Alice and Bob is in the state
|Ψ〉AB = 1√

2
(|0〉A |0〉B + |1〉A |1〉B)

I We can write the combined state as
|ψ〉a |Ψ〉AB = (α |0〉a + β |1〉a) 1√

2
(|0〉A |0〉B + |1〉A |1〉B)

I Lets see what happens to this state if we apply a Bell
measurement to the first two qubits

I We can think of the Bell measurement in terms of the circuit
introduced earlier

I First, a controlled-X is applied to the two qubits, then a
Hadamard rotation is applied to the first qubit, and finally
both the qubits are measured
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Quantum teleportation

I We have the overall state:
|ψ〉a |Ψ〉AB = (α |0〉a + β |1〉a) 1√

2
(|0〉A |0〉B + |1〉A |1〉B)

I The controlled-X will change the state to:
α |0〉a

1√
2

(|0〉A |0〉B + |1〉A |1〉B)

+β |1〉a
1√
2

(|1〉A |0〉B + |0〉A |1〉B)

I The Hadamard will change this to:
α 1√

2
(|0〉a + |1〉a) 1√

2
(|0〉A |0〉B + |1〉A |1〉B)

+β 1√
2

(|0〉a − |1〉a) 1√
2

(|1〉A |0〉B + |0〉A |1〉B)

I = α1
2((|0〉a + |1〉a) |0〉A |0〉B + (|0〉a + |1〉a) |1〉A |1〉B)

+β 1
2((|0〉a − |1〉a) |1〉A |0〉B + (|0〉a − |1〉a) |0〉A |1〉B)

I = α1
2(|0〉a |0〉A |0〉B + |1〉a |0〉A |0〉B + |0〉a |1〉A |1〉B +

|1〉a |1〉A |1〉B) + β 1
2(|0〉a |1〉A |0〉B − |1〉a |1〉A |0〉B +

|0〉a |0〉A |1〉B − |1〉a |0〉A |1〉B)
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Quantum teleportation

I = α1
2 |0〉a |0〉A |0〉B + β 1

2 |0〉a |0〉A |1〉B
+β 1

2 |0〉a |1〉A |0〉B + α1
2 |0〉a |1〉A |1〉B

+α1
2 |1〉a |0〉A |0〉B − β

1
2 |1〉a |0〉A |1〉B

−β 1
2 |1〉a |1〉A |0〉B + α1

2 |1〉a |1〉A |1〉B
I = 1

2 |0〉a |0〉A (α |0〉B + β |1〉B)
+1

2 |0〉a |1〉A (α |1〉B + β |0〉B)
+1

2 |1〉a |0〉A (α |0〉B − β |1〉B)
+1

2 |1〉a |1〉A (α |1〉B − β |0〉B)

I What happens if Alice now measures her qubits?
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Quantum teleportation

I We are left with one of the following four states, each with
probability 1

4 :
I 00 leaves the state α |0〉B + β |1〉B
I 01 leaves the state α |1〉B + β |0〉B
I 10 leaves the state α |0〉B − β |1〉B
I 11 leaves the state α |1〉B − β |0〉B

I The original qubit state |ψ〉 can be recovered from any of
these states:

I if Bob receives 00 then he already has the teleported state
I if Bob receives 01 then he needs to apply a Pauli-X to recover

the teleported state
I if Bob receives 10 then he needs to apply a Pauli-Z to recover

the teleported state
I if Bob receives 11 then he needs to apply a Pauli-X and a

Pauli-Z to recover the teleported state
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Quantum teleportation

I What about the no-cloning theorem?

I Have we cloned the original state |ψ〉?
I No! Alice’s qubits are in one of the computational base states

I Teleportation is able to transfer an arbitrary state, not copy it

I In doing the teleportation, we have also lost the entanglement
that Alice and Bob shared

I It is possible to think of this in terms of a resource, that we
have used up

I Like superdense coding, we are able to derive the quantum
teleportation circuit from a classical circuit.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Deriving teleportation

I The following circuit transfers the state of the first qubit to
the second qubit:

I

|ψ〉 • X |0〉

|0〉 X • |ψ〉
I We know we need an extra qubit for the Bell state, so lets

introduce that

I

|ψ〉 • X |0〉
|+〉 |+〉
|0〉 X • |ψ〉
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Deriving teleportation

I Using (d)

I

|ψ〉 • H Z H |0〉
|+〉 |+〉
|0〉 X • |ψ〉

I Using (e)

I

|ψ〉 • H • H |0〉
|+〉 |+〉
|0〉 X Z |ψ〉
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Deriving teleportation

I Pauli-X is the identity on |+〉
I

|ψ〉 • • H • H |0〉

|+〉 X |+〉

|0〉 X Z |ψ〉
I Using (h)

I

|ψ〉 • H • H |0〉

|+〉 • X • |+〉

|0〉 X X Z |ψ〉
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Deriving teleportation

I removing the last Hadamard changes the output state

I

|ψ〉 • H • |+〉

|+〉 • X • |+〉

|0〉 X X Z |ψ〉
I adding a hadamard at the begining changes the input state

I

|ψ〉 • H • |+〉

|0〉 H • X • |+〉

|0〉 X X Z |ψ〉
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Deriving teleportation

I Sliding the controlled-X and Hadamard around

I

|ψ〉 • H • |+〉

|0〉 H • X • |+〉

|0〉 X X Z |ψ〉
I Introducing measurement

I

|ψ〉 • H • ?>=<89:;M 0or1

|0〉 H • X • ?>=<89:;M 0or1

|0〉 X X Z |ψ〉
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Deriving teleportation

I Measurement commutes over controls
I

|ψ〉 • H ?>=<89:;M • 0or1

|0〉 H • X ?>=<89:;M • 0or1

|0〉 X X Z |ψ〉
I Spacing it out a little
I

|ψ〉 • H ?>=<89:;M • 0or1

|0〉 H • X ?>=<89:;M • 0or1

|0〉 X X Z |ψ〉
I This is the circuit for quantum teleportation
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Part III

Deutsch’s Algorithm
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Deutsch’s Algorithm

I Deutsch’s algorithm is possibly the simplest algorithm that
solves a problem faster than on a classical computer

I It involves being given a Boolean function (E.g.
f :: Bool → Bool) and being asked whether the function is
balanced, or constant

I If the function is balanced, then it returns False and True for
half the inputs each

I If the function is constant, then it always returns the same
result, no matter what the input is

I If I was to give you a function f , and ask you if it was
constant or balanced, how many times would you have to
evaluate that function?

I Using Deutsch’s algorithm, we are able to define a quantum
computation that only evaluates the function once, and will
return the correct answer with absolute certainty

I (albeit over a quantum state)
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Deutsch’s algorithm

I The following circuit implements Deutsch’s algorithm

I

|0〉 H x x H

Uf

|1〉 H y y ⊕ f (x)

I We can see what happens if we run this circuit for different
functions f

I The first two Hadamard gates take the inputs to |+〉 and |−〉

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Deutsch’s algorithm

I

|+〉 x x H

Uf

|−〉 y y ⊕ f (x)

I What are the outputs for each function f :: Bool → Bool
I (f = λx → False) leaves the state as |+−〉
I (f = λx → True) negates both qubits leaving − |+−〉
I (f = λx → x) negates the second qubit when the top qubit is
|1〉, leaving |−−〉

I (f = λx → ¬ x) negates the second qubit when the top qubit
is |0〉, leaving − |−−〉

I What do we notice about the output state when f is constant,
or when f is balanced?
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Deutsch’s algorithm

I When f is constant, we’re left with the states ± |+−〉
I When f is balanced, we’re left with the states ± |−−〉
I What effect does the final Hadamard have on these states?

I ± |+−〉 is taken to ± |0−〉
I ± |−−〉 is taken to ± |1−〉
I The ± is a global phase, so doesn’t effect measurement

I So, measuring the first qubit gives us exactly 0 if f is
constant, and exactly 1 if f is balanced

I We’ll start to see next week that many quantum algorithms
have a similar strucutre to this
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Part IV

Deutsch-Jozsa
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Deutsch-Jozsa

I The Deutsch-Jozsa algorithm is a generalisation of Deutsch’s
algorithm, to Boolean functions with an arbitrary number of
input arguments, but only a single Boolean output

I As long as the function is guaranteed to be either balanced, or
constant, then the Deutsch-Jozsa algorithm can tell you with
certainty which type it is...

I and only has to evaluate the function once

I (albeit over a quantum state)

I Classically, in the worst case, you would have to evaluate the
function once more than for half the possible inputs
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Deutsch-Jozsa

I The following circuit implements Deutsch-Jozsa:

I

|0〉⊗n
H⊗n x x H⊗n

Uf

|1〉 H y y ⊕ f (x)

I It is very similar to Deutsch’s algorithm...

I requiring one more qubit than the number of inputs to the
Boolean function

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Remember...

I Remember, labs are on Thursday, 15:00 to 17:00

I The labs this week will look again at the algorithms
introduced in this lecture.

I Next week, we shall be looking at a more complicated
quantum algorithm...

I known as Grover’s algorithm

I or Grover’s quantum unsorted database searching algorithm

I Thank you
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