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Exercise sheet 4

These exercises carry on from Exercise sheets 1, 2 and 3; and may use some of
the types and functions you have previously defined.

The exercises are listed here, but more information can be found in the hints
and tips section below.

1. Implement, in Haskell and QIO , the EPR experiment, as was shown in
the lecture slides.

2. Implement a function (experiments :: Int → IO (Float ,Float)) that re-
peatedly runs the EPR experiment, the number of times given by the
argument, and returns the fraction of times that the measurements agree
for both the classical and quantum variant of the experiment

3. What fraction of the experiments give matching measurements if you run
the experiment 100,000 times? What does this suggest to us about quan-
tum computation?

4. Implement a function ghz :: Int → QIO [Qbit ] that creates a GHZ state
over the number of qubits given by the first argument.

5. Implement a function, oneTenth :: QIO Bool , that returns a True value
only with probability 1

10 .

6. Implement a function, falseProb ::Float → QIO Bool , that returns a False
value only with the probability of the argument.

7. In the lecture, we have only been looking at one of the Bell states. There
are actually four of them. Implement in QIO , functions that return a pair
of qubits in each of the other three Bell states.

8. Implement a function bellMeasurement :: (Qbit ,Qbit) → QIO (Bool ,Bool)
that does a Bell measurement of the two argument qubits.
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Hints and Tips

Exercise information

1. You can use all the definitions given in the slides, but may need to define
extra functions as well, e.g. the randomSetting ::IO Setting function needs
to be defined.

2. The experiment function defined for the previous question returns a pair
of Booleans which are whether or not the measurements agreed in the clas-
sical and quantum variant of the experiment. The function experiments
that you need to define, must keep track of what percentage of the runs
returned True for either variant. Try to make your solution efficient so
the next question doesn’t take too long.

3. This should just be the result returned when you run experiments 100000
(a good implementation should be able to do this in less than a minute,
and without a stack overflow!), and a brief comment on what these values
seem to imply.

4. A GHZ state is a generalisation of the Bell state that we have been using.
It generalises the sharing of the |+〉 state over an arbitrary number of
qubits (> 2). E.g. the GHZ state over three qubits is 1√

2
|000〉+ 1√

2
|111〉.

You may find this exercise easier if you implement a function share ::
Qbit → QIO Qbit that shares the state of the argument qubit with a
newly initialised qubit, and returns the new qubit.

5. In order to do this, you need to rotate a single qubit the correct amount so
that its measurement probabilities are as required, e.g. True or |1〉 with
probability 1

10 . The best way to do this is to define an exponentiation of
one of the Pauli gates. E.g. A Pauli gate can be exponentiated so that
it represents a rotation by any angle θ around its corresponding axis. For
Pauli-X and Pauli-Y gates, the exponentiations can be defined as follows
for any angle θ.

Rx(θ) =
[

cos θ
2 −isin θ

2

−isin θ
2 cos θ

2

]
Ry(θ) =

[
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

]
The trick is to then find an angle that takes one of the base states to a
state which has the correct measurement properties. You should be able
to calculate the angle.

6. This exercise is similar to the previous exercise, but the rotation required
must now be calculated from the input. You can assume that the input
argument n is always in the range 0 6 n 6 1. Because QIO uses floating
point numbers to simulate the complex amplitudes, you will find that
your implementation is not exact. E.g. It doesn’t matter if simulating
your function gives results that aren’t exactly the input probability.
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As a guide, the following is what my implementation gives:

> sim (falseProb 0.2)
[(True, 0.79999995), (False, 0.20000005)]

7. The four Bell states are as follows:

1√
2
|00〉+

1√
2
|11〉 1√

2
|00〉 − 1√

2
|11〉

1√
2
|01〉+

1√
2
|10〉 1√

2
|01〉 − 1√

2
|10〉

8. The Bell measurement is an important concept that we shall be using
when we look at quantum teleportation, and super-dense coding. It can
be thought of as measuring which of the four Bell states a pair of qubits
are in (if they’re in a Bell state). That is it maps the four Bell states
to the four two-qubit base states. You should define a member of the U
data-type that does this transformation (e.g. bellU :: Qbit → Qbit → U ),
and then measure the qubits. If the inputs were in a Bell state, then the
output will be one of the two-qubit base states with probability 1. Try it
out with the four Bell states that you defined for the previous question.

The Quantum IO Monad

The Quantum IO Monad, or QIO is a monadic interface from Haskell to quan-
tum computation. More precisely, it is a library that allows you to define unitary
operators and effectful quantum computations, along with simulator functions
that allow you to run the quantum computations that you define. A lot of
information on QIO including its implementation are available online (see the
links on the course webpage). Installation of QIO is relatively straightforward
if you can make use of cabal (cabal is part of the Haskell platform, and as such
should already be installed on the machines in A32).

The following list of instructions will install QIO on the windows machines
in A32 (but you may need to re-install it for every session). The following
commands should be entered in a command prompt:

• Set the http proxy in the current command prompt

set HTTP_PROXY=wwwcache.cs.nott.ac.uk:3128

• Make sure the cabal list of packages is up to date:

cabal update

• Install QIO (in your own user space, as you don’t have global permissions)

cabal install QIO --user
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(note: if you don’t have a proxy, and you are using your own machine, then
you should just have to update the list of packages as above, and install the
QIO package without the –user flag)

If you are having difficulties installing QIO you can always download the
source from: http://www.cs.nott.ac.uk/ asg/QIO/ and import the files as nec-
essary. However, i would recommend this as a last resort, and suggest that you
contact me for support.

Information

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

The weekly submissions should be emailed to me (asg@cs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).
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