GH3NSC and GH4NSC
Non-Standard Computation
Lab 6 Exercises

Dr. Alexander S. Green
11th March 2010

Exercise sheet 6

These exercises carry on from Exercise sheets 1, 2, 3, 4 and 5; and may use
some of the types and functions you have previously defined.

The exercises are listed here, but more information can be found in the hints
and tips section below.

1. Implement, using QIO, instances of Grover’s algorithm for search spaces
of size N =4, N =8, and N = 16.

2. Shor’s algorithm requires a unitary that can be used to calculate the func-
tion f(x) = b®(mod n) over a quantum state. We could extend on the
reversible adder we defined for exercise sheet 2 to build a library of re-
versible arithmetic functions that can be used in Q0. Using the unitary
defined for reversible addition in exercise sheet 2, define a unitary for
reversible modular addition.

3. Assume you have a function period :: Integer — Integer — QIO Integer,
such that period n b is a quantum computation that returns the period of
the function f(z) = b*(mod n), write an effectful classical computation
that uses the period function to calculate the factors of a large number N,
defined such that N = pq, where p and ¢ are different prime numbers.

Hints and Tips

Exercise information

1. For each size of search space, you will need to define a unitary that
corresponds to V', a unitary that corresponds to W, and calculate how
many iterations of these are required. The unitary V depends upon an
input search function, e.g. for N = 8, this function would have type



search :: (Bool, Bool, Bool) — Bool, and only return True for the single
element that is being searched for. V' can be defined using the trick of an
ancilliary qubit that is set to |—). W is hard to define, so you may wish
to define —W instead, which doesn’t effect the measurement probabilities.
—W doesn’t depend on the input search function. Test your solutions by
defining some instances of the search functions, and simulating the run-
ning of the computation to check the probabilities of measuring the correct
solution. Remember, for small N (as is the case here), you will need to
take the original angle 6 of the |¢) state into account when calculating the
number of iterations. Try and show your workings for calculating the an-
gle f as comments in your code, or you could define a function in Haskell
that calculates the number of iterations for you.

2. T would suggest reading the paper “Quantum networks for elementary
arithmetic operations” that is linked from the module web page. Feel free
to implement more of the arithmetic functions if you are feeling adventur-
ous.

3. You may find it useful to implement a dummy function for period so that
your programs still type check correctly. E.g.

period :: Integer — Integer — QIO Integer
period b n = return 0

You can think of the period function as the quantum part of Shor’s algo-
rithm. What you have to define, are the classical parts of the computation
that turn factorisation into a period finding problem. That is, you need to
define an overall function factorise :: Integer — IO (Integer, Integer), that
randomly picks a value for b that is co-prime to the value of n, calls the
period function with these values, and then checks to see if the returned
value has the two necessary properties. If it has, then you can use it to
calculate the two return results of the factorisation function, otherwise
you need to restart the algorithm with a new random value for b.

As the period function is only a dummy function (E.g. it doesn’t return the
actual period of the function f(z) = b*(mod n)) you won’t be able to test
your solution directly. If you're feeling adventurous, then you may wish to
define the period function (either (unefficiently) classically or quantumly),
or have the dummy value it returns set to a suitable value for some test
input.

The Quantum IO Monad

The Quantum IO Monad, or QIO is a monadic interface from Haskell to quan-
tum computation. More precisely, it is a library that allows you to define unitary
operators and effectful quantum computations, along with simulator functions
that allow you to run the quantum computations that you define. A lot of
information on QIO including its implementation are available online (see the
links on the course webpage). Installation of QIO is relatively straightforward



if you can make use of cabal (cabal is part of the Haskell platform, and as such
should already be installed on the machines in A32).

The following list of instructions will install Q10 on the windows machines
in A32 (but you may need to re-install it for every session). The following
commands should be entered in a command prompt:

e Set the http proxy in the current command prompt
set HTTP_PROXY=wwwcache.cs.nott.ac.uk:3128
e Make sure the cabal list of packages is up to date:
cabal update
e Install QIO (in your own user space, as you don’t have global permissions)
cabal install QIO --user

(note: if you don’t have a proxy, and you are using your own machine, then
you should just have to update the list of packages as above, and install the
QIO package without the —user flag)

If you are having difficulties installing QIO you can always download the
source from: http://www.cs.nott.ac.uk/ asg/QIO/ and import the files as nec-
essary. However, i would recommend this as a last resort, and suggest that you
contact me for support.

Information

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

The weekly submissions should be emailed to me (asg@Qcs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).



