
G53NSC and G54NSC
Non-Standard Computation

Dr. Alexander S. Green

26th of January 2010

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

Part I

Introduction

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

Introduction
Module Content

G53NSC and G54NSC - Non-Standard Computation

I Lecturer: Dr. Alexander S. Green (asg@cs.nott.ac.uk)

I Module Convener: Dr. Thorsten Altenkirch

I Module Webpage: http://www.cs.nott.ac.uk/˜asg/NSC/

I Lectures: Tuesdays 11:00 to 13:00 (Business School South
A24)

I Labs: Thursdays 15:00 to 17:00 (Computer Science A32)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

Introduction
Module Content

What are the contents of this module?

I Non-Standard Computation...

I Any form of computation that doesn’t follow the standard
format of computation...

I What is computation?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

What is Computation?

I What is computation?

I Computation is a general term for any type of information
processing

I Computation is a process following a well-defined model that
can be expressed as an algorithm

I What are algorithms?

I An algorithm is an effective method for solving a problem
using a finite sequence of instructions

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Alonzo Church
λ-calculus

Alan Turing
Turing machines

Church-Turing Thesis

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Church-Turing thesis

Church-Turing thesis

All computational formalisms define the same set of computable
functions

I What is meant by all computation formalisms?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Church-Turing thesis

Church-Turing thesis

All physically realisable computational formalisms define the same
set of computable functions

I This thesis is believed by most people

I The subject area of Hypercomputing tries to challenge this.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

What about complexity issues?

I We can write computable functions that take too long to
actually compute in practise

I The best known algrithm for finding the prime factors of a
large number is exponential in the size of the number to be
factored

I However, primality testing (and multiplication), are only
polynomial in the size of their arguments.

I The RSA encryption algorithm uses this anti-symmetry

I Current computers would take around a thousand years to
break a 1024-bit RSA encryption key!

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

P versus NP

I The complexity class P contains computations that can be
computed in polynomial time

I Computations in P are said to have efficient solutions.
I The complexity class NP contains computations that don’t

currently have efficient solutions. They are said to be
unfeasible computations.

I It is still an unanswered question, but it is widely believed that
P 6= NP

I Other complexity classes exist... (We shall look at a few later)
For example, primality testing is in BPP
Bounded-error, Probabilistic, Polynomial time

I Factorisation is currently in NP so isn’t a feasible
computation.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Extended Church-Turing thesis

Extended Church-Turing thesis

All physically realisable computational formalisms define the same
set of feasible computable functions

I Non-Standard models of computation can challenge this

I What are these Non-Standard models of computation?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Non-Standard models of Computation

I DNA Computation is inspired by Molecular Biology

I Quantum Computation is inspired by Quantum Mechanics
and Physics

I Cell Computation and P-Systems are inspired by Cell Biology

I This module will focus on Quantum Computation

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Why Quantum Computation?

Peter Shor
Shor’s Algorithm

I Shor discovered his probabilistic
algorithm in 1994

I It can be used to factorise large
numbers in polynomial time

I ... on a suitably sized Quantum
Computer

I Quantum Computation seems
to challenge the Extended
Church-Turing thesis

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout
Module Evaluation

How is this module evaluated?

I 50% Portfolio project
consisting of weekly lab reports

I 50% Research report and presentation
Individually for G54NSC students
In pairs for G53NSC students

I with the possibility of a Viva...

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout
Module Evaluation

Portfolio project

I Labs: Thursdays 15:00 to 17:00 (Computer Science A32)

I Exercises set weekly, using Haskell
including work using the Quantum IO Monad, a library of
functions for quantum computation in Haskell

I The last part of this lecture will be a Haskell refresher

I Overall deadline for portfolio: On course webpage

I Weekly Hand-ins suggested to enable continuous feedback

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout
Module Evaluation

Research report and presentation

I Suggested topics available on course webpage

I Topic (and pairings for G53NSC) to be chosen by February
12th

I Each topic can only be done by one group (or individual for
G54NSC)

I Get in early as topics are on a first-come first-serve basis

I After February 12th, pairings and topics will be allocated for
you!

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout
Module Evaluation

Research report and presentation

I Report in the form of a research paper on your chosen topic

I Presentations give an overview of the research paper

I Presentations are 12 minutes with 3 minutes for questions

I Presentations will be during the last two lectures
Tuesday 23rd March, and Tuesday 30th March

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Welcome
Computation

Course Layout
Module Evaluation

Useful Material

I The course website contains many
useful links:
http://www.cs.nott.ac.uk/˜asg/NSC/

I The course will use the book:
“Quantum Computer Science, An
Introduction” by N. David Mermin
(ISBN 0-521-87658-2)

I The book “Quantum Computation
and Quantum Information” by Nielsen
and Chuang is also very good
(ISBN 0-521-63503-9)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Part II

A Brief introduction to Quantum Mechanics

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Isaac Newton
Light is made of particles

Christiaan Huygens
Light is a wave

Who is correct?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Young’s Double Slit Experiment

Thomas Young
Young’s double slit

experiment

I The experiment involves shining
light through two slits onto a
screen

I If light is made of particles, we
would see two bands of light

I If light is a wave, we would see
an interference pattern

I What are we going to see?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Young’s Double Slit Experiment

I An interference
pattern occurs

I Light is a wave?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Young’s Double Slit Experiment

I But, what if we can slow
this expermient down?

I Light now appears to
arrive at the screen a
single particle at a time

I Over time we still get an
interference pattern

I Each photon must
somehow interfere with
itself

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

Wave-particle Duality

Wave-particle Duality

I At the quantum scale, matter exhibits both wave-like and
particle-like behaviour

I E.g. Photons, and Electrons

I This is known as Wave-particle duality

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

The Copenhagen interpretation

Niels Bohr Werner Heisenberg

Copenhagen interpretation of Quantum Mechanics

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

The Copenhagen interpretation

I The state of every particle is described by a wavefunction

I The wavefunction describes how a quantum state is a
superposition of all possible classical states

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

The Born rule

Max Born
The Born rule

I The probability of an
event is related to the
square of the amplitude of
the wavefunction
corresponding to it

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

The Copenhagen interpretation

I The state of every particle is described by a wavefunction

I The wavefunction describes how a quantum state is a
superposition of all possible classical states

I The amplitudes correspond to the probability of observing a
particle in a certain location

I Observation (or measurement) causes a wavefunction collapse,
leaving the particle only in the state in which it was observed

I How can we talk about quantum states more formally?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

Dirac notation

Paul Dirac
Dirac notation

I Dirac came up with the Bra-Ket
notation for describing quantum
states

I It is used extenisvely in the
study of Quantum Mechanics
and Quantum Computation

I Using Bras (〈 |) and Kets (| 〉)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

The Born rule
The Copenhagen interpretation
Dirac notation

Dirac notation

I Kets (| 〉) are used to denote the classical states in a quantum
state

I with a corresponding complex valued amplitude

I We shall be using Dirac notation throughout this module...

I starting next week!

I What about the Labs this Thursday?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

Labs on Thursday

I Lab exercises will make use of Haskell

I including advanced topics such as Monads

I We shall also be using the Quantum IO Monad, to write
quantum computations within Haskell

I More information on the Quantum IO Monad is linked on the
course webpage

I The rest of this lecture is a (re)introduction to the necessary
Haskell for this weeks lab exercises

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Part III

A brief (re)introduction to Haskell

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Haskell

I Haskell is a functional programming language

I The functional paradigm means computations are defined in
terms of function applications, and not variable assignments

I We will make use of the Glasgow Haskell Compiler’s
interactive system: GHCi

I GHC and GHCi are available online:
http://www.haskell.org/ghc/

I The following slides are based on a similar lecture by Dr.
Graham Hutton

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Example

Summing the integers 1 to 10 in Java

total = 0;
for (i = 1; i <= 10; ++i)

total = total + i ;

The computational method is variable assignment

Summing the integers 1 to 10 in Haskell

sum [1 . . 10]
The computation method is function application

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Types in Haskell

I A type is a name for a collection of related values

I For example: the type

Bool

I contains the two logical values:

False
True

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Types in Haskell

I If evaluating an expression e would produce a value of type t,
the e has type t, written

e :: t

I Every well formed expression has a type, which can be
automatically calculated at compile time using a process
called type inference

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Types in Haskell

I Haskell has a number of basic types:

I Bool - logical values

I Char - single characters

I String - strings of character

I Int - fixed-precision integers

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Lists in Haskell

I A list is a sequence of values of the same type

[False,True,False] :: [Bool]
[’a’, ’b’, ’c’, ’d’] :: [Char]

I In general, [t] is the type of lists with elements of type t

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Tuples in Haskell

I A tuple is a sequence of values of different types

(False,True) :: (Bool ,Bool)
(False, ’a’,True) :: (Bool ,Char ,Bool)

I In general, (t1 , t2 , ..., tn) is the type of n-tuples with ith
element of type ti for any i in 1 . . n

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Function Types

I A function is a mapping from values of one type to values of
another type

not :: Bool → Bool
isDigit :: Char → Bool

I In general, t1 → t2 is the type of functions that map values
of type t1 to values of type t2

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Polymorphic Functions

I A functions is called polymorphic if its type contains one or
more type variables

length :: [a]→ Int

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Pattern Matching

I Many functions have a particuarly clear definition using
pattern matching on their arguments

not :: Bool → Bool
not False = True
not True = False

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Pattern Matching

I Functions on lists can be defined using x : xs patterns

head :: [a]→ a
head (x :) = x

tail :: [a]→ [a]
tail (: xs) = xs

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Lambda Expressions

I A function can be constructed without giving it a name by
using a lambda expression

λx → x + 1

I Lambda expressions can be used to give a formal meaning to
functions defined using currying

add x y = x + y
means

add = λx → (λy → x + y)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

List comprehensions

I In Haskell, the comprehension notation can be used to
construct new lists from old lists

[x2 | x ← [1 . . 5]]

I The expression x ← [1 . . 5] is called a generator

I Comprehensions can have multiple generators

[(x , y) | x ← [1, 2, 3], y ← [4, 5]]
gives

[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Dependant Generators

I Later generators can depend on the variables that are
introduced by earlier generators

[(x , y) | x ← [1 . . 3], y ← [x . . 3]]
gives

[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]

I Using a dependant generator we can define the library
functions that concatenates a list of lists

concat :: [[a]]→ [a]
concat xss = [x | xs ← xss, x ← xs]

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Function Types
Polymorphic Functions
Defining Functions
List comprehensions

Guards

I List comprehensions can use guards to restrict the values
produced by earlier generators

[x | x ← [1 . . 10], even x]

I Using a guard we can define a function that maps a positive
integer to a list of its factors

factors :: Int → [Int]
factors n = [x | x ← [1 . . n], n ’mod’ x ≡ 0]

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Recursive functions

Recursive functions

I In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive

factorial 0 = 1
factorial (n + 1) = (n + 1) ∗ factorial n

For example, factorial 3
= 3 ∗ factorial 2
= 3 ∗ (2 ∗ factorial 1)
= 3 ∗ (2 ∗ (1 ∗ factorial 0))
= 3 ∗ (2 ∗ (1 ∗ 1))
= 3 ∗ (2 ∗ 1)
= 3 ∗ 2
= 6

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Recursive functions

Recursion

I Recursion is useful as properties of recursive functions can be
proved using the mathematical technique of induction

I Recursion can also be used to define functions on lists

product :: [Int]→ Int
product [] = 1
product (n : ns) = n ∗ product ns

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Declaring Types
Type Constructors

Data Declarations

I A new type can be declared by specifying its set of values
using a data declaration

data Bool = False | True

I Values of new types can be used in the same ways as those of
built in types

I In Haskell, new types can be recursive

data Nat = Zero | Suc Nat

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Haskell
Functions

Recursive functions
Declaring Types

Declaring Types
Type Constructors

Type Constructors and Monads

I Haskell also allows us to define types that may contain other
types

data Maybe t = Just t | Nothing

I The first lab on Thursday will look at how we can use these
Type Constructors to define Monads.

I Monads enable us to define impure computations within
Haskell, which is a pure language

I We will be using the IO Monad to create a probabilistic
primality test

I Later in the course we will be using the Quantum IO Monad
to define quantum computations in Haskell

I Please see the course webpage on Thursday for more
information

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

	Introduction
	Welcome to G53NSC and G54NSC
	Introduction
	Module Content

	Computation
	What is Computation?
	Church-Turing thesis
	Extended Church-Turing thesis
	Non-Standard models of Computation
	Why Quantum Computation?

	Course Layout
	Module Evaluation

	Quantum Mechanics
	Quantum Mechanics
	A Brief introduction to Quantum Mechanics
	Is light a wave or a particle?
	Young's Double Slit Experiment

	Wave-particle Duality
	Wave-particle Duality

	The Copenhagen interpretation
	The Born rule
	The Copenhagen interpretation
	Dirac notation

	Labs

	Haskell
	Haskell
	Functional Programming
	Types
	List Types
	Tuple Types

	Functions
	Function Types
	Polymorphic Functions
	Defining Functions
	List comprehensions

	Recursive functions
	Recursive functions

	Declaring Types
	Declaring Types
	Type Constructors

