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G53NSC and G54NSC - Non-Standard Computation

I Lecturer: Dr. Alexander S. Green (asg@cs.nott.ac.uk)

I Module Convener: Dr. Thorsten Altenkirch

I Module Webpage: http://www.cs.nott.ac.uk/˜asg/NSC/

I Lectures: Tuesdays 11:00 to 13:00 (Business School South
A24)

I Labs: Thursdays 15:00 to 17:00 (Computer Science A32)
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What are the contents of this module?

I Non-Standard Computation...

I Any form of computation that doesn’t follow the standard
format of computation...

I What is computation?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

What is Computation?

I What is computation?

I Computation is a general term for any type of information
processing

I Computation is a process following a well-defined model that
can be expressed as an algorithm

I What are algorithms?

I An algorithm is an effective method for solving a problem
using a finite sequence of instructions
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Alonzo Church
λ-calculus

Alan Turing
Turing machines

Church-Turing Thesis
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Church-Turing thesis

Church-Turing thesis

All computational formalisms define the same set of computable
functions

I What is meant by all computation formalisms?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Welcome
Computation

Course Layout

What is Computation?
Church-Turing thesis
Extended Church-Turing thesis
Non-Standard models of Computation
Why Quantum Computation?

Church-Turing thesis

Church-Turing thesis

All physically realisable computational formalisms define the same
set of computable functions

I This thesis is believed by most people

I The subject area of Hypercomputing tries to challenge this.
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What about complexity issues?

I We can write computable functions that take too long to
actually compute in practise

I The best known algrithm for finding the prime factors of a
large number is exponential in the size of the number to be
factored

I However, primality testing (and multiplication), are only
polynomial in the size of their arguments.

I The RSA encryption algorithm uses this anti-symmetry

I Current computers would take around a thousand years to
break a 1024-bit RSA encryption key!
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P versus NP

I The complexity class P contains computations that can be
computed in polynomial time

I Computations in P are said to have efficient solutions.
I The complexity class NP contains computations that don’t

currently have efficient solutions. They are said to be
unfeasible computations.

I It is still an unanswered question, but it is widely believed that
P 6= NP

I Other complexity classes exist... (We shall look at a few later)
For example, primality testing is in BPP
Bounded-error, Probabilistic, Polynomial time

I Factorisation is currently in NP so isn’t a feasible
computation.
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Extended Church-Turing thesis

Extended Church-Turing thesis

All physically realisable computational formalisms define the same
set of feasible computable functions

I Non-Standard models of computation can challenge this

I What are these Non-Standard models of computation?
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Non-Standard models of Computation

I DNA Computation is inspired by Molecular Biology

I Quantum Computation is inspired by Quantum Mechanics
and Physics

I Cell Computation and P-Systems are inspired by Cell Biology

I This module will focus on Quantum Computation
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Why Quantum Computation?

Peter Shor
Shor’s Algorithm

I Shor discovered his probabilistic
algorithm in 1994

I It can be used to factorise large
numbers in polynomial time

I ... on a suitably sized Quantum
Computer

I Quantum Computation seems
to challenge the Extended
Church-Turing thesis
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How is this module evaluated?

I 50% Portfolio project
consisting of weekly lab reports

I 50% Research report and presentation
Individually for G54NSC students
In pairs for G53NSC students

I with the possibility of a Viva...
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Portfolio project

I Labs: Thursdays 15:00 to 17:00 (Computer Science A32)

I Exercises set weekly, using Haskell
including work using the Quantum IO Monad, a library of
functions for quantum computation in Haskell

I The last part of this lecture will be a Haskell refresher

I Overall deadline for portfolio: On course webpage

I Weekly Hand-ins suggested to enable continuous feedback
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Research report and presentation

I Suggested topics available on course webpage

I Topic (and pairings for G53NSC) to be chosen by February
12th

I Each topic can only be done by one group (or individual for
G54NSC)

I Get in early as topics are on a first-come first-serve basis

I After February 12th, pairings and topics will be allocated for
you!
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Research report and presentation

I Report in the form of a research paper on your chosen topic

I Presentations give an overview of the research paper

I Presentations are 12 minutes with 3 minutes for questions

I Presentations will be during the last two lectures
Tuesday 23rd March, and Tuesday 30th March
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Useful Material

I The course website contains many
useful links:
http://www.cs.nott.ac.uk/˜asg/NSC/

I The course will use the book:
“Quantum Computer Science, An
Introduction” by N. David Mermin
(ISBN 0-521-87658-2)

I The book “Quantum Computation
and Quantum Information” by Nielsen
and Chuang is also very good
(ISBN 0-521-63503-9)
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Part II

A Brief introduction to Quantum Mechanics
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Isaac Newton
Light is made of particles

Christiaan Huygens
Light is a wave

Who is correct?
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Young’s Double Slit Experiment

Thomas Young
Young’s double slit

experiment

I The experiment involves shining
light through two slits onto a
screen

I If light is made of particles, we
would see two bands of light

I If light is a wave, we would see
an interference pattern

I What are we going to see?
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Young’s Double Slit Experiment

I An interference
pattern occurs

I Light is a wave?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Quantum Mechanics
Wave-particle Duality

The Copenhagen interpretation
Labs

A Brief introduction to Quantum Mechanics
Is light a wave or a particle?
Young’s Double Slit Experiment

Young’s Double Slit Experiment

I But, what if we can slow
this expermient down?

I Light now appears to
arrive at the screen a
single particle at a time

I Over time we still get an
interference pattern

I Each photon must
somehow interfere with
itself
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Wave-particle Duality

I At the quantum scale, matter exhibits both wave-like and
particle-like behaviour

I E.g. Photons, and Electrons

I This is known as Wave-particle duality
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The Copenhagen interpretation

Niels Bohr Werner Heisenberg

Copenhagen interpretation of Quantum Mechanics
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The Copenhagen interpretation

I The state of every particle is described by a wavefunction

I The wavefunction describes how a quantum state is a
superposition of all possible classical states
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The Born rule

Max Born
The Born rule

I The probability of an
event is related to the
square of the amplitude of
the wavefunction
corresponding to it
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The Copenhagen interpretation

I The state of every particle is described by a wavefunction

I The wavefunction describes how a quantum state is a
superposition of all possible classical states

I The amplitudes correspond to the probability of observing a
particle in a certain location

I Observation (or measurement) causes a wavefunction collapse,
leaving the particle only in the state in which it was observed

I How can we talk about quantum states more formally?
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Dirac notation

Paul Dirac
Dirac notation

I Dirac came up with the Bra-Ket
notation for describing quantum
states

I It is used extenisvely in the
study of Quantum Mechanics
and Quantum Computation

I Using Bras (〈 |) and Kets (| 〉)
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Dirac notation

I Kets (| 〉) are used to denote the classical states in a quantum
state

I with a corresponding complex valued amplitude

I We shall be using Dirac notation throughout this module...

I starting next week!

I What about the Labs this Thursday?
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Labs on Thursday

I Lab exercises will make use of Haskell

I including advanced topics such as Monads

I We shall also be using the Quantum IO Monad, to write
quantum computations within Haskell

I More information on the Quantum IO Monad is linked on the
course webpage

I The rest of this lecture is a (re)introduction to the necessary
Haskell for this weeks lab exercises
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A brief (re)introduction to Haskell
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Haskell

I Haskell is a functional programming language

I The functional paradigm means computations are defined in
terms of function applications, and not variable assignments

I We will make use of the Glasgow Haskell Compiler’s
interactive system: GHCi

I GHC and GHCi are available online:
http://www.haskell.org/ghc/

I The following slides are based on a similar lecture by Dr.
Graham Hutton
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Example

Summing the integers 1 to 10 in Java

total = 0;
for (i = 1; i <= 10; ++i)

total = total + i ;

The computational method is variable assignment

Summing the integers 1 to 10 in Haskell

sum [1 . . 10]
The computation method is function application
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Types in Haskell

I A type is a name for a collection of related values

I For example: the type

Bool

I contains the two logical values:

False
True

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Haskell
Functions

Recursive functions
Declaring Types

Functional Programming
Types
List Types
Tuple Types

Types in Haskell

I If evaluating an expression e would produce a value of type t,
the e has type t, written

e :: t

I Every well formed expression has a type, which can be
automatically calculated at compile time using a process
called type inference
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Types in Haskell

I Haskell has a number of basic types:

I Bool - logical values

I Char - single characters

I String - strings of character

I Int - fixed-precision integers
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Lists in Haskell

I A list is a sequence of values of the same type

[False,True,False ] :: [Bool ]
[’a’, ’b’, ’c’, ’d’] :: [Char ]

I In general, [t ] is the type of lists with elements of type t
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Tuples in Haskell

I A tuple is a sequence of values of different types

(False,True) :: (Bool ,Bool)
(False, ’a’,True) :: (Bool ,Char ,Bool)

I In general, (t1 , t2 , ..., tn) is the type of n-tuples with ith
element of type ti for any i in 1 . . n
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Function Types

I A function is a mapping from values of one type to values of
another type

not :: Bool → Bool
isDigit :: Char → Bool

I In general, t1 → t2 is the type of functions that map values
of type t1 to values of type t2
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Polymorphic Functions

I A functions is called polymorphic if its type contains one or
more type variables

length :: [a ]→ Int
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Pattern Matching

I Many functions have a particuarly clear definition using
pattern matching on their arguments

not :: Bool → Bool
not False = True
not True = False
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Pattern Matching

I Functions on lists can be defined using x : xs patterns

head :: [a ]→ a
head (x : ) = x

tail :: [a ]→ [a ]
tail ( : xs) = xs
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Lambda Expressions

I A function can be constructed without giving it a name by
using a lambda expression

λx → x + 1

I Lambda expressions can be used to give a formal meaning to
functions defined using currying

add x y = x + y
means

add = λx → (λy → x + y)
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List comprehensions

I In Haskell, the comprehension notation can be used to
construct new lists from old lists

[x2 | x ← [1 . . 5]]

I The expression x ← [1 . . 5] is called a generator

I Comprehensions can have multiple generators

[(x , y) | x ← [1, 2, 3], y ← [4, 5]]
gives

[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]
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Dependant Generators

I Later generators can depend on the variables that are
introduced by earlier generators

[(x , y) | x ← [1 . . 3], y ← [x . . 3]]
gives

[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]

I Using a dependant generator we can define the library
functions that concatenates a list of lists

concat :: [[a ]]→ [a ]
concat xss = [x | xs ← xss, x ← xs ]
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Guards

I List comprehensions can use guards to restrict the values
produced by earlier generators

[x | x ← [1 . . 10], even x ]

I Using a guard we can define a function that maps a positive
integer to a list of its factors

factors :: Int → [Int ]
factors n = [x | x ← [1 . . n ], n ’mod’ x ≡ 0]
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Recursive functions

I In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive

factorial 0 = 1
factorial (n + 1) = (n + 1) ∗ factorial n

For example, factorial 3
= 3 ∗ factorial 2
= 3 ∗ (2 ∗ factorial 1)
= 3 ∗ (2 ∗ (1 ∗ factorial 0))
= 3 ∗ (2 ∗ (1 ∗ 1))
= 3 ∗ (2 ∗ 1)
= 3 ∗ 2
= 6
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Recursion

I Recursion is useful as properties of recursive functions can be
proved using the mathematical technique of induction

I Recursion can also be used to define functions on lists

product :: [ Int ]→ Int
product [ ] = 1
product (n : ns) = n ∗ product ns
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Data Declarations

I A new type can be declared by specifying its set of values
using a data declaration

data Bool = False | True

I Values of new types can be used in the same ways as those of
built in types

I In Haskell, new types can be recursive

data Nat = Zero | Suc Nat
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Type Constructors and Monads

I Haskell also allows us to define types that may contain other
types

data Maybe t = Just t | Nothing

I The first lab on Thursday will look at how we can use these
Type Constructors to define Monads.

I Monads enable us to define impure computations within
Haskell, which is a pure language

I We will be using the IO Monad to create a probabilistic
primality test

I Later in the course we will be using the Quantum IO Monad
to define quantum computations in Haskell

I Please see the course webpage on Thursday for more
information
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