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Deadlines
Recap

Part I

Preliminaries
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Deadlines
Recap

Deadlines

Course Deadlines

I The module deadlines are now finalised!
I Portfolio

I Weekly hand-ins for feedback (to me)
I Final deadline: 12:00 (midday), Thursday the 1st of April 2010
I Final submission is via the school office

I Research Paper
I Initial deadline: 12:00 (midday), Friday the 19th of March 2010
I Presentations on 23rd and 30th of March, 11:00 to 13:00
I Final deadline: 12:00 (midday), Tuesday the 11th of May 2010
I Both submissions are via the school office
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Deadlines
Recap

Last week
Today

Recap of the previous lecture

I The Church-Turing thesis
I What about unfeasible computations?

I The Extended Church-Turing thesis
I What about Non-Standard models of computation?
I e.g. Quantum Computation

I Shor’s algorithm could factorise large numbers in polynomial
time on a suitably sized Quantum Computer
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Deadlines
Recap

Last week
Today

Recap of the previous lecture

I Quantum computation is inspired by Quantum Mechanics
I At the quantum scale, matter exhibits both wave-like and

particle-like behaviour
I Wave-particle duality

I The Copenhagen interpretation
I States are described by a wavefunction
I Amplitudes correspond to probabilities of certain observations

I Dirac (or Bra-Ket) notation is used for describing quantum
states
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Deadlines
Recap

Last week
Today

What are we covering today?

I Classical computation

I Universality

I Reversible computation

I Is reversible computation universal?

I A look at Dirac notation for reversible computation

I Reversible computation with the Quantum IO Monad
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Classical computation

Part II

Classical computation
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

What are computations?

I We have bits that can be in the states 0 or 1
I Computations take strings of bits to other such strings
I Abstractly we can treat bits as Boolean values...
I and Computations as logical operations acting on these bits
I Physically, computers must contain physical systems that can

represent these abstract “bits”...
I E.g. a system that can exist in two unambiguously

distinguishable states
I Switches that can be “On” or “Off”
I Magnetic polarisation that can be “Up” or “Down”
I etc.

I and Logic gates that can manipulate the states accordingly
I We usually call both the abstract values, and the physical

systems “bits”
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Are all “Computations” possible?

I For Universal computation, we must be able to translate any
arbitrary bit string to any other arbitrary bit string

I What logical operations do we require for this?

I How can we prove whether a set of logical operations is
universal?

I Logical operations correspond to Boolean functions, and
define a universal set if the corresponding Boolean functions
are functionally complete
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness

Functional Completeness

A set of Boolean functions (fi : {0, 1}ni → {0, 1}) is functionally
complete, if all other Boolean functions (f : {0, 1}n → {0, 1} for
all n > 1) can be constructed from this set, along with a set of
input variables.

I The set {∧,∨,¬} is a common functionally complete set
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

I We can sketch a proof that the set {∧,∨,¬} is functionally
complete

I First, we can look at the truth tables for these operations

∧ : {0, 1}2 → {0, 1}

b0 b1 b0 ∧ b1

0 0 0
0 1 0
1 0 0
1 1 1

∨ : {0, 1}2 → {0, 1}

b0 b1 b0 ∨ b1

0 0 0
0 1 1
1 0 1
1 1 1

¬ : {0, 1} → {0, 1}

b0 ¬b0

0 1
1 0
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

I We can now also think of our arbitray Boolean functions in
terms of their truth tables.

I E.g. For any f : {0, 1}n → {0, 1} we can give the truth table

b0 b1 . . . bn f (b0, b1, . . . , bn)

0 0 . . . 0 f (0, 0, . . . , 0)
0 0 . . . 1 f (0, 0, . . . , 1)
...

...
...

...
...

1 1 . . . 0 f (1, 1, . . . , 0)
1 1 . . . 1 f (1, 1, . . . , 1)
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

I Lets now look at a subset of all Boolean functions.

I Boolean functions that evaluate to 1 for only one input state,
and 0 for all other input states

I We can use ∧ and ¬ to explicitly define these Boolean
functions.

I We shall call these type of functions minterms

I E.g. The function f : {0, 1}5 → {0, 1} which evaluates to 1
only on the input (b0, b1, b2, b3, b4) = (1, 0, 0, 1, 1) is defined
exactly by b0 ∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4
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Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

b0 b1 b2 b3 b4 b0 ∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

I All Boolean functions (except constant 0) can now be
constructed using the type of functions we have just been
looking at, along with the ∨ operator.

I An arbitrary function is defined by combining the minterms for
each input that evaluates to 1.

I E.g. the function f : {0, 1}3 → {0, 1} with the following truth
table:

b0 b1 b2 f (b0, b1, b2)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

I can be given by
f = (¬b0 ∧ ¬b1 ∧ b2) ∨ (¬b0 ∧ b1 ∧ ¬b2) ∨ (b0 ∧ ¬b1 ∧ b2)
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Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Functional Completeness of {∧,∨,¬}

I The special case of the constant 0 function can be defined in
its simplest form by the function 0 : {0, 1} → {0, 1} such the
0(b0) = b0 ∧ ¬b0

I We can use this proof to try and find other universal sets of
functions

I Any set of Boolean functions that can be used to define these
three functions must also be universal.

I Are there any smaller sets?

I We can use involution and de Morgan’s laws to define ∨ in
terms of ∧ and ¬.

I b0 ∨ b1 = ¬(¬b0 ∧ ¬b1)

I So, the set {∧,¬} is also universal
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

What about even smaller sets?

I Can we find a single Boolean function that is functionally
complete

I In fact, such functions do exist

I NAND (↑) and NOR (↓) are both examples of functionally
complete Boolean functions

NAND : {0, 1}2 → {0, 1}
b0 b1 b0 ↑ b1

0 0 1
0 1 1
1 0 1
1 1 0

NOR : {0, 1}2 → {0, 1}
b0 b1 b0 ↓ b1

0 0 1
0 1 0
1 0 0
1 1 0

I Can we prove that they are universal?
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Universality of NAND

I We can define ¬ in terms of a NAND gate

I ¬b0 = b0 ↑ b0

I We can now define ∧ in terms of NAND and ¬
I b0 ∧ b1 = ¬(b0 ↑ b1)

I Thus showing NAND is universal

I The proof for NOR is very similar (see this weeks lab exercises)
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Towards Quantum Computation

I Can we extend these universal sets to give us quantum
computaion?

I Unfortunately it’s not that simple...

I In Quantum Mechanics, all physical processes are by
definition, unitary

I That is, every process has an inverse

I Can we define inverses for any of the sets of functions we have
seen?
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Classical computation

Computations
Functional Completeness
Universality of “and”, “or”, and “not”
Universality of NAND
Extending classical to quantum

Irreversibility of ∧, NAND, and NOR

I Lets look again at the truth tables for ∧, NAND, and NOR

b0 b1 b0 ∧ b1

0 0 0
0 1 0
1 0 0
1 1 1

b0 b1 b0 ↑ b1

0 0 1
0 1 1
1 0 1
1 1 0

b0 b1 b0 ↓ b1

0 0 1
0 1 0
1 0 0
1 1 0

I None of them are reversible
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Reversible Computation
Universality

Part III

Reversible Computation
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Reversible Computation
Universality

Reversible Computation
A History of Reversible Computation
Reversible logic gates

Reversible Computation

I How can we define Reversible Computation?

I A reversible computation is one whose transition functions are
of a one-to-one nature (or injective)

I Reversible computation is interesting to us, as the operations
in classical reversible computation form a subset of the
operations available in quantum computation

I Reversible computation has been well studied for various other
reasons too!

I We’ll look now at a brief history of classical reversible
computation
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Reversible Computation
A History of Reversible Computation
Reversible logic gates

A History of Reversible Computation

Rolf Landauer
Landauer’s principle

Landauer’s principle

“any logically irreversible
manipulation of information, such as
the erasure of a bit or the merging of
two computation paths, must be
accompanied by a corresponding
entropy increase in non-information
bearing degrees of freedom of the
information processing apparatus or
its environment”
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Reversible Computation
Universality

Reversible Computation
A History of Reversible Computation
Reversible logic gates

Landauer’s principle

I Landauer’s principle follows from the second law of
thermodynamics

I The entropy of a closed system cannot decrease

I Entropy can be thought of as the number of ways in which a
system can be arranged

I A logically irreversible computation defines a process that
decreases entropy, so this must be accounted for by an
increase of entropy in the rest of the system

I For a change in entropy (S), this will result in energy
(E = ST ) being released (where T is the temperature of the
system).
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A History of Reversible Computation
Reversible logic gates

A History of Reversible Computation

John von Neumann

I John von Neumann suggested
that the minimum energy
dissipation from a logically
reversible binary operation is
kTloge2, where k is the
Boltzmann constant, and T is
the temperature of the
environment

I Landauer justified this limit

I Giving us what is now called the
von Neumann-Landauer limit
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Reversible Computation
Universality

Reversible Computation
A History of Reversible Computation
Reversible logic gates

The von Neumann-Landauer limit

I The von Neumann-Landauer limit of kTloge2 per bit of lost
information gives us a fundamental limit for the energy
efficiency of irreversible computation

I Reversible computation allows us to overcome this limit.

I Rolf Landauer also concluded that for any computational
process to be reversible, it must be logically reversible

I This means we can look at reversible computation in a similar
manner as we have been irreversible classical computation, in
terms of reversible logic gates

I What can we actually do in computational terms?
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Reversible Computation
Universality

Reversible Computation
A History of Reversible Computation
Reversible logic gates

Logical reversibility of computation

Charles H. Bennett

I Bennett wrote what is now
thought of as the seminal paper
on reversible computation

I “Logical reversibility of
computation”

I published in 1973 in the IBM
journal of Research and
Development
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Reversible Computation
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Reversible Computation
A History of Reversible Computation
Reversible logic gates

Reversible logic gates

I How can we think of reversible computation today?

I What logic gates can we define that are reversible?

I Do these reversible logic gates give us a universal set?

I Have we seen any reversible logic gates already?

I The ¬ operator is logically reversible

b0 ¬b0

0 1
1 0

I What is its inverse?
I It is its own inverse
I E.g. ¬(¬b0) = b0

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Reversible Computation
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Reversible Computation
A History of Reversible Computation
Reversible logic gates

Reversible logic gates

I The only other 1-bit reversible logic gate is the identity

I These two reversible logic gates are not universal, so we need
to look at 2-bit reversible logic gates

I There are 24 2-bit reversible logic gates

I In fact, for n bits, there are 2n! reversible logic gates

I It is useful to look at 2-bit reversible logic gates to see what is
required to construct them (above and beyond the 1-bit
reversible logic gates)
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Reversible Computation
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Reversible Computation
A History of Reversible Computation
Reversible logic gates

2-bit reversible logic gates

I We shall start giving logic gates a notation in the form of
circuits, along with their corresponding truth tables

I The simplest circuit is just a wire and represents the identity
gate

b0 b0

b0 b0

0 0
1 1

I The ¬ operation can also be represented as a circuit

b0 X ¬b0

b0 ¬b0

0 1
1 0
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Reversible Computation
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Reversible Computation
A History of Reversible Computation
Reversible logic gates

2-bit reversible logic gates

I For more than 1-bit, we only need to introduce two new
constructs

I Firstly, the Swap operation

b0 ???? b1
b1

���� b0

b0in b1in b0out b1out

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

I Swaps are used to wire up circuits

I The other new construct is the control structure

I Depending on the value of a control wire, a logic gate is
applied
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Reversible logic gates

2-bit reversible logic gates

I For example, a controlled-X operation

b0 • b0

b1 X b0 ⊕ b1

b0in b1in b0out b1out

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

I Any other logic gate can be controlled, such as a
controlled-Swap

I ...or even another control structure
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Reversible Computation
Universality

Universality or Reversible circuits
Universality of the Toffoli gate

Are 2-bit reversible logic gates universal?

I We could now construct any of the 24 2-bit reversible logic
gates

I Does this give us a universal set of reversible logic gates?

I Unfortunately it doesn’t...

I The only new logical operation we can achieve is the XOR
gate (or permutations thereof)

I The set {XOR,¬} is not universal

I So, is reversible computation universal?

I Can we find a 3-bit reversible circuit that is universal?
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Reversible Computation
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Universality or Reversible circuits
Universality of the Toffoli gate

Tommaso Toffoli
The Toffoli gate

Edward Fredkin
The Fredkin gate

They are both examples of universal 3-bit reversible logic gates
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Reversible Computation
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Universality of the Toffoli gate

The Toffoli gate

b0 • b0
b1 • b1

b2 X b2 ⊕ (b0 ∧ b1)

b0in b1in b2in b0out b1out b2out

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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The Fredkin gate

b0 • b0
b1 ???? b1 ⊕ ((b1 ⊕ b2) ∧ b0)
b2

���� b2 ⊕ ((b1 ⊕ b2) ∧ b0)

b0in b1in b2in b0out b1out b2out

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1
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Universality of the Toffoli gate

Universality of the Toffoli gate

I There are other universal 3-bit reversible logic gates

I We shall look at the Toffoli gate

I In order to prove universality, we must introduce the idea of
defining irreversible computations embedded within reversible
computations

I This is possible if we have both a set of heap inputs, and
garbage outputs

I The heap consists of any extra bits initialised to 0 or 1 that
are required by the reversible computation

I The garbage consists of output bits that aren’t part of the
result of the irreversible computation, but are required as part
of the reversible computation
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Universality of the Toffoli gate

I Heap inputs are denoted:
0� . . . or

1� . . .

I Garbage outputs are denoted:

. . . �

I What can we do with the Toffoli gate, along with heap and
garbage?
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The Toffoli gate

b0 • b0
b1 • b1

b2 X b2 ⊕ (b0 ∧ b1)

b0in b1in b2in b0out b1out b2out

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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The Toffoli gate with Heap

b0 • b0
b1 • b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b2in b0out b1out b2out

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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The Toffoli gate with Heap

b0 • b0
b1 • b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b2in b0out b1out b2out

0 0 1 0 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0
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The Toffoli gate with Heap

b0 • b0
b1 • b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b2in b0out b1out b2out

0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0
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Universality of the Toffoli gate

The Toffoli gate with Heap

b0 • b0
b1 • b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b0out b1out b2out

0 0 0 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0
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Reversible Computation
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Universality or Reversible circuits
Universality of the Toffoli gate

The Toffoli gate with Heap and Garbage

b0 • � b0
b1 • � b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b0out b1out b2out

0 0 0 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0
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The Toffoli gate with Heap and Garbage

b0 • � b0
b1 • � b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b0out b1out b2out

0 0 1
0 1 1
1 0 1
1 1 0
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Universality of the Toffoli gate

The Toffoli gate with Heap and Garbage

b0 • � b0
b1 • � b1

1�
X b2 ⊕ (b0 ∧ b1)

b0in b1in b2out

0 0 1
0 1 1
1 0 1
1 1 0
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Universality of the Toffoli gate

b0in b1in b2out

0 0 1
0 1 1
1 0 1
1 1 0

I Using Heaps and Garbage we can embed the NAND operation
into a Toffoli gate

I This means that the Toffoli gate is universal

I Hence, reversible computation is universal

I However, to keep the computations reversible we must keep
track of the Garbage outputs
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Generalised Reversible Computation

I In general, we can use extra Heap inputs as ancilliary bits to
copy out the results, allowing us to run the reverse
computation over the inputs so we don’t need to keep track of
garbage

I It is this generalised type of reversible computation that was
first suggested in Bennett’s paper

I We can re-implement our NAND construction following this
practice

I First, we need the inverse of the toffoli gate

I Fortunately for us, it is self inverse

I We make use of a controlled-X to copy out the result onto a
zeroed ancilliary bit
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Generalised Reversible Computation

I We can simplify things even further by restricting heap inputs
to only be 0

I Adding a X gate to the circuit on heaps that need to be 1

I Using this we can simplify our notation for heaps
0� . . . ≡ � . . .

1� . . . ≡ �
X . . .

I All outputs are now either the inputs, zeroes, or the result of
the computation
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Generalised Reversible Computation

I We can give our NAND construct using this generalisation

b0 • • b0
b1 • • b1

�
X X • X X

�

�
X b0 ↑ b1

I The lab exercises this week will look at more complicated
reversible computations.
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Part IV

Dirac notation for classical reversible computation
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Dirac notation
Dirac notation
States as vectors
Operations as matrices

Dirac notation

I We can represent the states of a bit as either |0〉 or |1〉
I For more than one bit we can extend this notation

I For 2 bits, there are four possible states

|0〉 |0〉, |0〉 |1〉, |1〉 |0〉, |1〉 |1〉

I For 3 bits, there are eight possible states

|0〉 |0〉 |0〉, |0〉 |0〉 |1〉, |0〉 |1〉 |0〉, |0〉 |1〉 |1〉
|1〉 |0〉 |0〉, |1〉 |0〉 |1〉, |1〉 |1〉 |0〉, |1〉 |1〉 |1〉

I For n bits, there are 2n possible states
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Dirac notation

I To ease notation, we can write each possible state in its own
ket construct

I The possible 2-bit states now become

|00〉, |01〉, |10〉, |11〉

I The possible 3-bit states become

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉

I But why do we use Dirac notation?

I It is useful to start thinking of states in terms of vectors,
Dirac notation is used to represent these vectors
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States as vectors

I We can think of the states of a bit in terms of two orthogonal
unit vectors in a two-dimensional space

I What do all these terms mean?
I For classical reversible computation we can restrict ourselves

to real valued vectors, which correspond nicely to Euclidean
geometry

I A vector in an n-dimensional space can be given in terms of n
(real valued) components

I A unit vector is a vector whose norm is 1
I The norm of a vector can be thought of (geometrically) as its

length, or Euclidean norm
I Two vectors are orthogonal if their inner product equals zero
I In a Euclidean space, inner product is simply dot product
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Definitions

For vectors x =


xo

x1
...

xn−1

 and y =


yo

y1
...

yn−1

 in an

n-dimensional vector space (with xi , yi ∈ R for all 0 6 i < n)

the Euclidean norm of x =
√

x2
0 + x2

1 + . . . + x2
n−1

the innner product of x and y = xT y =

(x0, x1, . . . , xn−1)


yo

y1
...

yn−1

 = x0y0 + x1y1 + . . . + xn−1yn−1
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Dirac notation

I So we can think of a two dimensional vector space over the
real numbers as a plane

I All unit vectors form a circle of radius 1 about the origin

I For classical computation, we need two orthogonal vectors to
represent the states of our bit

I Orthogonality in our geometric interpretation corresponds to
vectors seperated by an angle of 90o

I To keep things simple we choose the following two vectors:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
I Operations on bits must only map between these two states
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Single-bit operations

I How can we define these operations?

I Well these operations (or computations) are thought of in
terms of matrices

I The reversibility is enforced by restricting ourselves to unitary
matrices

I Having only the states |0〉 and |1〉 also means we are
restricted to matrices that only contain 1s and 0s

I So, what operations can we define on a single bit?

I How can we apply these operations to our bit?
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Single-bit operations

I There are only two, two-dimensional unitary matrices that
contain only 0s and 1s[

1 0
0 1

] [
0 1
1 0

]
I We shall now call these operations, unitary operators

I How do we apply these unitary operators?

I The application of a unitary operator corresponds to matrix
(pre) multiplication

I Lets see what these two single bit unitary operators
correspond to

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Dirac notation
Dirac notation
States as vectors
Operations as matrices

Single-bit operations

I This kind of matrix (pre) multiplication is defined by:
a00 a01 . . . a0(n−1)

a10 a11 . . . a1(n−1)
...

... . . .
...

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1)




b0

b1
...

bn−1



=


a00b0 + a01b1 + . . . + a0(n−1)bn−1

a10b0 + a11b1 + . . . + a1(n−1)bn−1
...

a(n−1)0b0 + a(n−1)1b1 + . . . + a(n−1)(n−1)bn−1


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Single-bit operations

[
1 0
0 1

]
|0〉 = |0〉

[
1 0
0 1

]
|1〉 = |1〉

[
0 1
1 0

]
|0〉 = |1〉

[
0 1
1 0

]
|1〉 = |0〉

I These unitary operators correspond exactly to the single-bit
operations defined previously

I In fact we can keep the circuit diargram notation

I But what about more than one bit?
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Mutiple bits

I We’ve already seen how we can write multiple bit states using
Dirac notation

I But what does this mean in terms of our vectors?

I Within Dirac notation we implicitly use the tensor product to
create higher-dimensional vector spaces

I The tensor of two single bit states is an element of a
4-dimensional vector space

I The tensor of n single bit states is an element of a
2n-dimensional vector space

I For example, when we write |101〉 we actually mean
|1〉 ⊗ |0〉 ⊗ |1〉
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Tensor product


a0

a1

...
an−1

⊗


b0

b1

...
bm−1

 =



a0b0

a0b1

...
a0bm−1

a1b0

a1b1

...
a1bm−1

...
an−1b0

an−1b1

...
an−1bm−1


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two-bit states

I We can give the four, two-bit states

|00〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 |01〉 = |0〉 ⊗ |1〉 =


0
1
0
0



|10〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 |11〉 = |1〉 ⊗ |1〉 =


0
0
0
1


I In general, the state of n bits is defined by a vector of length

2n, such that all elements are 0 except a single 1 exactly the
number of rows down that corresponds to the decimal
expansion of the corresponding bit string
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Multiple-bit operations

I To define universal reversible computation, we must be able to
define the constructs used previouly

I Namely the swap operation and the control structure
I These can easily be converted into unitary matrices
I We must also be able to compose operations to form larger

circuits
I These compositions correspond exactly to operations on the

matrices
I Sequential composition is just matrix (pre) multiplication
I Parallel composition is just matrix tensor product
I So, what are the matrices that represent our constructs?
I If we know the truth table for a reversible operation, then it is

easy to create a unitary matrix that represents it
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From truth table to matrix

I Each row of the matrix corresponds to an input state, and
each column corresponds to an output state

I For each input state, we must put a single 1 in the column
that represents its output state

I Lets try it for Swap and Controlled-X

Swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 Controlled − X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Why model reversible computation like this?

I This may seem like a complicated way of defining reversible
computation

I However, this approach extends nicely to a model of quantum
computation

I Quantum computation is less restrictive on the states a
quantum bit can be in

I We will start looking next week at quantum computation
I It is useful to start thinking of reversible computation in two

ways:
I Syntactically in terms of the circuits we have described
I Semantically in terms of the underlying vector-space model
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Labs and the Quantum IO Monad

I Remember to come to the lab on Thursday!

I We shall be looking at using the Quantum IO Monad to
define reversible computations

I The exercise sheet will be online from around 2pm on
Thursday, and will contain a detailed introduction to the
classical subset of QIO

I I hope to see you there, and will be willing to accept hand-ins
of last weeks exercises in order to give you feedback next week

I There is now a link to the module forum on the course
webpage
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