
G53NSC and G54NSC
Non-Standard Computation

Dr. Alexander S. Green

9th of March 2010

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Introduction

I Last week we looked at Grover’s algorithm

I We shall start today by looking at an example of Grover’s
algorithm

I for a search space of size 8 (N = 3)

I Then we’ll be moving on to Shor’s algorithm...

I Looking at a similar algorithm known as Simon’s algorithm

I How it relates to Shor’s algorithm and period finding

I and how period finding relates to Factorisation

I Next week, we’ll look at how the Quantum Fourier transform
is used in Shor’s algorithm

I and work through an example factorisation using Shor’s
algorithm

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Research Presentations

I Research presentations start in two weeks...

I So it is time to set a schedule for the talks
I There are 7 projects:

I 4 will take place on the 23rd of March
I 3 will take place on the 30th of March

I To randomly choose the order of talks, I shall use QIO...

I The webpage will be updated accordingly

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Part I

Grover’s Algorithm

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I An example application of Grover’s algorithm for N = 3

I We’re given a function f of type (Bool ,Bool ,Bool)→ Bool
which returns True only for one input

I We can define a unitary Uf such that
Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f (x)〉

I and setting the fourth qubit as an ancilliary qubit, in the state
|−〉, gives us the unitary V we require

I V |x〉 = (−1)f (x) |x〉 =

{
|x〉 , x 6= a
− |a〉 , x = a

I We now need to define the necessary W unitary too...

I Remember, we could use −W

I −W = H⊗3W ′H⊗3 where

W ′ |x〉 = (−1)x≡0 |x〉 =

{
|x〉 , x 6= 0
− |0〉 , x = 0

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I We can define the state |a〉 as the state we are looking for

I and the state |a⊥〉 as the states orthogonal to |a〉
I We can create the following state using Hadamard rotations:
|φ〉 = 1√

8
(|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉)

I Which can be alternately written as:√
7
8 |a⊥〉+ 1√

8
|a〉

I We can visualise this on the plane spanned by |a〉 and |a⊥〉

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

|o>

|a >

|a>

1

1

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I The angle (θ) between |a⊥〉 and |φ〉 can now be calculated...

I Remembering, for a right angled triangle that
sinθ = Opposite

Hypotenuse

I |φ〉 is a unit vector, so the hypotenuse is 1

I The opposite is the amplitude of |a〉 in |φ〉, which we have
seen is 1√

8

I So, sinθ = 1√
8

and θ = sin−1 1√
8

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

|o>

|a >
8

1
sin −1

|a>

1

1

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I Remember, V reflects about the |a⊥〉 axis

I and W reflects about |φ〉
I Combined, they form what is known as a Grover iteration,

which rotates the state by 2θ

I How many iterations do we require here?

I For large N, |φ〉 is so close to |a⊥〉 that we can say the
number of iterations required is π

4

√
N

I However, for small N the original angle θ is enough to make a
difference

I We can calculate the number of iterations n by noting that
θ + 2nθ needs to be as close to π

2 as possible

I So, we need n to be the nearest integer to
π
2
−θ

2θ

I
π
2
−θ

2θ ≈ 1.673, so we have n = 2 iterations

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

|o>

|a >

|o>WV

8

1
sin −1

|a>

1

1

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I After only a single iteration, we can see the state is getting
close to |a〉

I The angle is 3θ, so we can calculate the measurement
probabilities...

I the amplitude of |a〉 can be calculated using sin3θ = Opposite
Hypotenuse

I Again, the hypotenuse is 1, so the opposite is sin3θ

I ≈ 0.88393

I So, the probability of measuring |a〉 after a single iteration is
|sin3θ|2 ≈ 0.781

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

|o>

|a >

|o>WVWV

|o>WV

8

1
sin −1

|a>

1

1

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Grover’s Algorithm

I After two iterations, we can see the state is closer to |a〉, and
it’s clear that another iteration would take us further from |a〉
again

I The angle is 5θ which is more than π
2 , but we can still

calculate the measurement probabilities

I the amplitude of |a〉 can be calculated using
sin(π − 5θ) = Opposite

Hypotenuse

I Again, the hypotenuse is 1, so the opposite is sin(π − 5θ)

I ≈ 0.972

I So, the probability of measuring |a〉 after a single iteration is
|sin(π − 5θ)|2 ≈ 0.945

I So, after 2 iterations, we have a probability of ≈ 0.945 of
measuring |a〉, no matter which of the base states it may be.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Grover’s Algorithm

Moving on

I The last exercise sheet will involve implementing Grover’s
algorithm for N = 3...

I You should compare your results with the results predicted by
us today

I For the rest of today, and next week’s lecture, we shall be
looking at Shor’s algorithm

I It is useful to first look at Simon’s algorithm...

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Part II

Simon’s Algorithm

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I Simon’s algorithm is said to be one of the main inspirations
behind Shor’s technique

I Although it is a simpler algorithm, it is very closely related to
Shor’s algorithm

I It was one of the first algorithms to show an exponential
speed-up over the fastest known classical solution

I It was first described by Daniel R. Simon in 1994

I You are given a function f :: Booln → Booln−1, that is defined
such that it is periodic under bitwise modulo-2 addition

I That is, if f (x) = f (y), then x = y or for some a, x = y ⊕ a

I In other words, there exists an a such that f (x ⊕ a) = f (x)

I Simon’s problem involves finding the value of a

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I Classically, the best algorithm for finding a is exponential in
the size of n

I Can we use a quantum computer to find a more efficient
solution?

I What happens if we define a unitary Uf that implements the
following

I Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f (x)〉
I and apply it to the state |φ〉 ⊗ |0〉?
I We’ll be left with the state 1

2
n
2

∑2n−1
x=0 |x〉 |f (x)〉

I Whereby each value of x is entangled with its corresponding
f (x)

I What is of note now, is what happens when we measure the
second register (the |f (x)〉)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I The two-to-one nature of f means that the second register
contains each possible value twice...

I once for the application f (x)
I once for the application f (x ⊕ a)

I Measuring the second register, will leave the first register in an
equal superposition of the two states corresponding to some x0

I E.g. 1√
2

(|x0〉+ |x0 ⊕ a〉)
I So, this looks promising, as we’re trying to learn a

I How can we extract a from this superposition?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I Unfortunately its not that straight forward...

I Measuring would just give us a single state, with no hint
towards a

I We cannot clone an arbitrary quantum state

I Repeating the experiment will (with high probability) leave us
with a different state (E.g. 1√

2
(|x1〉+ |x1 ⊕ a〉))

I All we have is a superposition whose states are related by the
number a we are trying to calculate

I Fortunately, Simon showed how we are able to learn some
partial information about a from the given state...

I All we need to do is apply Hadamard rotations to each qubit
in the first register before measuring.

I This doesn’t give us a, but gives us (with high probability)
enough information to determine a single bit of a.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I Lets look at this in a little more detail

I We have the state 1√
2

(|x0〉+ |x0 ⊕ a〉)
I This is an equal superposition of two base states

I Applying a Hadamard rotation to each of the qubits leaves the
state 1

2
n+1
2

∑2n−1
y=0 ((−1)x0·y + (−1)(x0⊕a)·y) |y〉

I Where · is the bitwise modulo-2 dot product

I We can note that (−1)(x0⊕a)·y = (−1)x0·y (−1)a·y

I So, in the cases where a · y = 1 the coefficients cancel each
other out...

I leaving 1

2
n−1

2

∑
a·y=0(−1)x0·y |y〉

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Simon’s Algorithm

Simon’s Algorithm

I What can we get from measuring this state?

I We get a base state |y〉 with the property that a · y = 0

I The state |y〉 is able to be used to calculate a single bit of a

I Simon went on to show, that you only need to repeat this
around n + 20 times to have learned all the bits of a (with the
proability of failure being less than 1 in a million)

I For more information on Simon’s algorithm, please see the
course text book

I So, Simon defined an algorithm that finds the period
(modulo-2) of a given function, exponentially faster than the
best classical solution.

I What has this got to do with Shor’s algorithm?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

Part III

Shor’s Algorithm

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

Shor’s Algorithm

I Shor’s algorithm is usually described as a factorisation
algorithm

I In fact, it is a period finding algorithm

I So, why is it described as a factorisation algorithm?

I Well, with a bit of number theory, we can reformulate
factorisation into finding the period of a specific function...

I We can restrict ourselves to the specific case of factorisation
where we want to factor N = pq with p and q both large
primes

I First, it is useful to look at periodic functions of the type bx

in modular arithmetic

I Remembering that b(modN) is the remainder of b
N

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

periodic modular aithmetic

I How about some examples...

I 5x(mod7)

5 = 5(mod7) 52 = 4(mod7) 53 = 6(mod7)

54 = 2(mod7) 55 = 3(mod7) 56 = 1(mod7)

I So, it is periodic with period 6

I 4x(mod7)

4 = 4(mod7) 42 = 2(mod7) 43 = 1(mod7)

I So, it is periodic with period 3

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

periodic modular arithmetic

I In fact, we can state the following theorem...

Theorem
If b shares no factors with N then br = 1(modN) for some integer
r

I and bx(modN) is a periodic function of x with period r
I A proof of this theorem follows from Lagrange’s theorem, but

i won’t go into details here
I Now, we can show that if r has two specific properties, then it

can be used to calculate p and q as required
I First, where does b come from?
I There are many values that b can take, and the values can be

calculated efficiently on a classical computer...
I For b and N to share no factors, we can calculate their GCD,

and check that it is 1

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

periodic modular arithmetic

I GCD can be calculated efficiently using the Euclidean
algorithm

I So we can calculate a random value b

I If the period we calculate doesn’t have the necessary
properties, then we can try again with a different value for b

I Shor showed that the probability of choosing a random b that
leads to a period r with the necessary properties is at least 0.5

I So, what are these properties?

I The first one is that r needs to be an even number

I If r is even, then we can calculate a value x = b
r
2 (modN)

I and note that (x − 1)(x + 1) = x2 − 1 = 0(modN)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

periodic modular arithmetic

I Another thing to note, is we also know that x − 1 6= 0(modN)

I This follows from r being the smallest integer value for which
br = 1(modN)

I Our second requirement is that x + 1 6= 0(modN)

I If both these properties hold, then we know that neither x − 1
nor x + 1 are divisible by N

I However, we do know that (x − 1)(x + 1) is divisible by N

I As N = pq is the product of two primes, we know that one of
x − 1 and x + 1 is divisible by p, and one is divisble by q

I So, one of p and q is the GCD of N and (x − 1)

I the other is the GCD of N and (x + 1)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

Shor’s Algorithm

I So, if we can find the period r of a function
f (x) = bx(modN), we can factorise N.

I To get started, all we need to do is define a unitary operator
Uf such that Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f (x)〉

I then applying the unitary Uf to an equal superposition of
states |φ〉 ⊗ |0〉 will leave us with the state
1

2
n
2

∑2n−1
x=0 |x〉 ⊗ |f (x)〉

I Measuring the second register will give us, with equal
probability, a single base state

I Leaving the first register in the state 1√
m

∑m−1
k=0 |x0 + kr〉

I Where m is the smallest integer such that mr + x0 > 2n

I We’re left with a similar situation as in Simon’s algorithm
I The states in the superposition are related by the period r

which we are trying to calculate, but how can we extract this
information?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

Shor’s Algorithm

I Unfortunately, we can’t just measure it...

I and Hadamard rotations aren’t enough, like they were in
Simon’s algorithm

I What Shor discovered was that applying the Quantum Fourier
transform to this state will allow us to extract the period r .

I We will be looking at the Quantum Fourier transform next
week

I along with how we can construct the necessary unitary for the
function f (x) = bx(modN)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Shor’s Algorithm

Thank you

I Remember, labs are on Thursday...

I This week’s exercise sheet will be the last

I Although labs will still run upto the deadline

I I hope to see you there

I Thank you.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

	Grover's Algorithm
	Grover's Algorithm

	Simon's Algorithm
	Simon's Algorithm

	Shor's Algorithm
	Shor's Algorithm

