
Functional Quantum Programming

The Quantum IO Monad

The Quantum IO Monad is an interface from Haskell to Quantum Computation and
provides a constructive semantics for quantum programming.

The QIO monad provides a functional inter-
face to quantum programming, similar to the
way Haskell’s IO monad provides an interface
to conventional stateful programming. The ba-
sic idea is that our classical computer is con-
nected to a quantum device which contains a
number of qubits.
The quantum device can be instructed to:

•Set qubits to one of the computational base
states (i.e. |0〉 = False or |1〉 = True).

•Perform unitary operations involving one or
several qubits.

•Measure qubits and observe the outcome.

We can either run our quantum program using
run or we can simulate the quantum program
using sim which calculates a probability distri-
bution.
e.g.
sim (bell >>= measQ) =

[((True,True), 0.5), ((False,False), 0.5)]

run (deutsch (λx → True)) = False

The Side effects from measurement are dealt
with by the monadic structure:
instance Monad QIO

mkQbit :: Bool → QIO Qbit

applyU :: U → QIO ()
measQbit :: Qbit → QIO Bool

The reversible nature of unitaries is kept seper-
ate in a monoidal structure:
instance Monoid U

rot :: Qbit → Rotation → U

swap :: Qbit → Qbit → U

cond :: Qbit → (Bool → U)→ U

ulet :: Bool → (Qbit → U)→ U

•Haskell is a pure functional language.

•Computations are modelled as the evaluation
of mathematical expressions.

•Programs are pure mathematical functions,
leading to an ease of abstraction and reason-
ing

•Effectful computations are simulated via mon-
ads (e.g. the IO Monad).

•do notation gives monadic programs a more
imperative look and feel.

QIO Examples
Creating a Bell state:
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)

Deutsch’s Algorithm:
u :: (Bool → Bool)→ Qbit → Qbit → U

u f x y = cond x (λb → if f b then unot y else •)

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (u f x y)

applyU (uhad x)

measQ x

We also have an implementation of quantum
teleportation, a library of reversible arithmetic
functions, the quantum Fourier transform, and
an implementation of Shor’s algorithm.
The code for QIO is available online from
http://www.cs.nott.ac.uk/˜asg/QIO and more
informtation on Haskell can be found at
http://www.haskell.org

Alexander S. Green and Thorsten Altenkirch

