
Quantum Programming in Haskell
with the Quantum IO Monad

Alexander S. Green and Thorsten Altenkirch

asg@cs.nott.ac.uk, txa@cs.nott.ac.uk

School of Computer Science,

The University of Nottingham

Quantum Programming in Haskell – p.1/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Quantum Programming in Haskell – p.2/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Quantum Programming in Haskell – p.2/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Quantum Programming in Haskell – p.2/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Quantum Programming in Haskell – p.2/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Quantum Programming in Haskell – p.2/28



Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.

Quantum Programming in Haskell – p.3/28



Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.

Quantum Programming in Haskell – p.3/28



Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.

Quantum Programming in Haskell – p.3/28



Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.

Quantum Programming in Haskell – p.3/28



Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.

Quantum Programming in Haskell – p.3/28



The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.

Quantum Programming in Haskell – p.4/28



The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.

Quantum Programming in Haskell – p.4/28



The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.

Quantum Programming in Haskell – p.4/28



The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.

Quantum Programming in Haskell – p.4/28



The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.

Quantum Programming in Haskell – p.4/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Quantum Programming in Haskell – p.5/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Quantum Programming in Haskell – p.5/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Quantum Programming in Haskell – p.5/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Quantum Programming in Haskell – p.5/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Quantum Programming in Haskell – p.5/28



‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo Quantum Programming in Haskell – p.5/28



The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell can be used to
help this.

•

|0〉 :: QIO Qbit

|0〉 = do qb ← mkQbit False

return x

•

|1〉 :: QIO Qbit

|1〉 = do qb ← mkQbit True

return x

Quantum Programming in Haskell – p.6/28



The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell can be used to
help this.

•

|0〉 :: QIO Qbit

|0〉 = do qb ← mkQbit False

return x

•

|1〉 :: QIO Qbit

|1〉 = do qb ← mkQbit True

return x

Quantum Programming in Haskell – p.6/28



The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell can be used to
help this.

•

|0〉 :: QIO Qbit

|0〉 = do qb ← mkQbit False

return x

•

|1〉 :: QIO Qbit

|1〉 = do qb ← mkQbit True

return x

Quantum Programming in Haskell – p.6/28



The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell can be used to
help this.

•

|0〉 :: QIO Qbit

|0〉 = do qb ← mkQbit False

return x

•

|1〉 :: QIO Qbit

|1〉 = do qb ← mkQbit True

return x

Quantum Programming in Haskell – p.6/28



QIO Examples

• Creating the state |+〉
|+〉 :: QIO Qbit

|+〉 = do qb ← |0〉

applyU (uhad qb)

return qb

• Creating a bell state
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (cond qa (λa → if a then (unot qb)

else (•)))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)

Quantum Programming in Haskell – p.7/28



QIO Examples

• Creating the state |+〉
|+〉 :: QIO Qbit

|+〉 = do qb ← |0〉

applyU (uhad qb)

return qb

• Creating a bell state
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (cond qa (λa → if a then (unot qb)

else (•)))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)
Quantum Programming in Haskell – p.7/28



Deutsch’s Algorithm

•
u :: (Bool → Bool)→ Qbit → Qbit → U

u f x y = cond x (λb → if f b then unot y else •)

•

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (u f x y)

applyU (uhad x)

b ← measQ x

return b

Quantum Programming in Haskell – p.8/28



Deutsch’s Algorithm

•
u :: (Bool → Bool)→ Qbit → Qbit → U

u f x y = cond x (λb → if f b then unot y else •)

•

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (u f x y)

applyU (uhad x)

b ← measQ x

return b

Quantum Programming in Haskell – p.8/28



QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U

Quantum Programming in Haskell – p.9/28



QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U

Quantum Programming in Haskell – p.9/28



QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U

Quantum Programming in Haskell – p.9/28



QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U

Quantum Programming in Haskell – p.9/28



QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U

Quantum Programming in Haskell – p.9/28



QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0

Quantum Programming in Haskell – p.10/28



QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0

Quantum Programming in Haskell – p.10/28



QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0

Quantum Programming in Haskell – p.10/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.

Quantum Programming in Haskell – p.11/28



Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Quantum Programming in Haskell – p.12/28



Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Quantum Programming in Haskell – p.12/28



Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Quantum Programming in Haskell – p.12/28



Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Quantum Programming in Haskell – p.12/28



Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Quantum Programming in Haskell – p.12/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Quantum Programming in Haskell – p.13/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



Teleportation

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq eq = do applyU (cond aq (λa →

if a then (unot eq)

else (•)))

applyU (uhad aq)

cd ← measQ (aq , eq)

return cd

Quantum Programming in Haskell – p.15/28



Teleportation.

bobsU :: (Bool ,Bool)→ Qbit → U

bobsU (False,False) eq = •

bobsU (False,True) eq = (unot eq)

bobsU (True,False) eq = (uZZ eq)

bobsU (True,True) eq = ((unot eq)

3 (uZZ eq))

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob eq cd = do applyU (bobsU cd eq)

return eq

Quantum Programming in Haskell – p.16/28



Teleportation..

teleportation :: Qbit → QIO Qbit

teleportation iq = do (eq1 , eq2 )← bell

cd ← alice iq eq1

tq ← bob eq2 cd

return tq

Quantum Programming in Haskell – p.17/28



Running QIO Computations

• We provide three evaluation functions for (classically)
simulating the running of our QIO computations.

• runQ returns a single probabilistic result.
>runQ (deutsch ¬)
True

>runQ (deutsch (λx → True))
False

• simQ returns a probability distribution of the possible
results.
>simQ (deutsch ¬)
[(True, 1.0)]
>simQ (meas bell)
[((True,True), 0.5), ((False,False), 0.5)]

Quantum Programming in Haskell – p.18/28



Running QIO Computations

• We provide three evaluation functions for (classically)
simulating the running of our QIO computations.

• runQ returns a single probabilistic result.
>runQ (deutsch ¬)
True

>runQ (deutsch (λx → True))
False

• simQ returns a probability distribution of the possible
results.
>simQ (deutsch ¬)
[(True, 1.0)]
>simQ (meas bell)
[((True,True), 0.5), ((False,False), 0.5)]

Quantum Programming in Haskell – p.18/28



Running QIO Computations

• We provide three evaluation functions for (classically)
simulating the running of our QIO computations.

• runQ returns a single probabilistic result.
>runQ (deutsch ¬)
True

>runQ (deutsch (λx → True))
False

• simQ returns a probability distribution of the possible
results.
>simQ (deutsch ¬)
[(True, 1.0)]
>simQ (meas bell)
[((True,True), 0.5), ((False,False), 0.5)]

Quantum Programming in Haskell – p.18/28



Running QIO Computations.

• There is also the runC function which efficiently
simulates computations that only use the classical
subset of U .
>runC (deutsch ¬)
*** Exception: not classical

• The runC function is useful for testing our reversible
arithmetic functions

Quantum Programming in Haskell – p.19/28



Running QIO Computations.

• There is also the runC function which efficiently
simulates computations that only use the classical
subset of U .
>runC (deutsch ¬)
*** Exception: not classical

• The runC function is useful for testing our reversible
arithmetic functions

Quantum Programming in Haskell – p.19/28



Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.

Quantum Programming in Haskell – p.20/28



Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.

Quantum Programming in Haskell – p.20/28



Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.

Quantum Programming in Haskell – p.20/28



Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.

Quantum Programming in Haskell – p.20/28



Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.

Quantum Programming in Haskell – p.20/28



Qdata

• The Qdata class defines functions that a pair of
corresponding classical and quantum data-types must
fulfill, within the QIO setting.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U )→ U

condQ :: qa → (a → U )→ U

Quantum Programming in Haskell – p.21/28



Qdata

• The Qdata class defines functions that a pair of
corresponding classical and quantum data-types must
fulfill, within the QIO setting.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U )→ U

condQ :: qa → (a → U )→ U

Quantum Programming in Haskell – p.21/28



Qdata

• Booleans and Qubits form the simplest instance of the
Qdata class.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

letU b xu = ulet b xu

condQ q br = cond q br

• We have also implemented a quantum data-type QInt

related to the (positive instances of) the Haskell Int

type.

Quantum Programming in Haskell – p.22/28



Qdata

• Booleans and Qubits form the simplest instance of the
Qdata class.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

letU b xu = ulet b xu

condQ q br = cond q br

• We have also implemented a quantum data-type QInt

related to the (positive instances of) the Haskell Int

type.

Quantum Programming in Haskell – p.22/28



Qdata

• Booleans and Qubits form the simplest instance of the
Qdata class.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

letU b xu = ulet b xu

condQ q br = cond q br

• We have also implemented a quantum data-type QInt

related to the (positive instances of) the Haskell Int

type.

Quantum Programming in Haskell – p.22/28



Reversible Arithmetic ...

• The circuits in [Vedral, Barenco, Ekert. 1996] make
extensive use of auxilliary qubits...

• ... which we can handle nicely using the ulet

constructor.

•

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc =

ulet False (qadd ′ qas qbs)

where qadd ′ [ ] [ ] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc′ → carry qc qa qb qc′
3

aadd ′ qas qbs qc′
3

urev (carry qc qa qb qc′)) 3

sumq qc qa qb

• The required modular exponentiation function
( modExp ) follows nicely.

Quantum Programming in Haskell – p.23/28



Reversible Arithmetic ...

• The circuits in [Vedral, Barenco, Ekert. 1996] make
extensive use of auxilliary qubits...

• ... which we can handle nicely using the ulet

constructor.

•

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc =

ulet False (qadd ′ qas qbs)

where qadd ′ [ ] [ ] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc′ → carry qc qa qb qc′
3

aadd ′ qas qbs qc′
3

urev (carry qc qa qb qc′)) 3

sumq qc qa qb

• The required modular exponentiation function
( modExp ) follows nicely.

Quantum Programming in Haskell – p.23/28



Reversible Arithmetic ...

• The circuits in [Vedral, Barenco, Ekert. 1996] make
extensive use of auxilliary qubits...

• ... which we can handle nicely using the ulet

constructor.

•

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc =

ulet False (qadd ′ qas qbs)

where qadd ′ [ ] [ ] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc′ → carry qc qa qb qc′
3

aadd ′ qas qbs qc′
3

urev (carry qc qa qb qc′)) 3

sumq qc qa qb

• The required modular exponentiation function
( modExp ) follows nicely.

Quantum Programming in Haskell – p.23/28



Reversible Arithmetic ...

• The circuits in [Vedral, Barenco, Ekert. 1996] make
extensive use of auxilliary qubits...

• ... which we can handle nicely using the ulet

constructor.

•

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc =

ulet False (qadd ′ qas qbs)

where qadd ′ [ ] [ ] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc′ → carry qc qa qb qc′
3

aadd ′ qas qbs qc′
3

urev (carry qc qa qb qc′)) 3

sumq qc qa qb

• The required modular exponentiation function
( modExp ) follows nicely. Quantum Programming in Haskell – p.23/28



Quantum Fourier transform

• Shor’s algorithm also required the inverse QFT.

• The structure of the QFT leads to a nice functional
representation using an accumulator function,
recursively defined over the input register.

•

qft :: [Qbit ]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [ ])

qftAcu :: [Qbit ]→ [Bool ]→ [Bool ]→ U

qftAcu [ ] [ ] = •

qftAcu (q : qs) (b : bs) cs = qftBase cs q 3 qftAcu qs bs (b : cs)

qftBase :: [Bool ]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [ ] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) 3 f ′ bs q (x + 1)

else f ′ bs q (x + 1)

Quantum Programming in Haskell – p.24/28



Quantum Fourier transform

• Shor’s algorithm also required the inverse QFT.

• The structure of the QFT leads to a nice functional
representation using an accumulator function,
recursively defined over the input register.

•

qft :: [Qbit ]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [ ])

qftAcu :: [Qbit ]→ [Bool ]→ [Bool ]→ U

qftAcu [ ] [ ] = •

qftAcu (q : qs) (b : bs) cs = qftBase cs q 3 qftAcu qs bs (b : cs)

qftBase :: [Bool ]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [ ] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) 3 f ′ bs q (x + 1)

else f ′ bs q (x + 1)

Quantum Programming in Haskell – p.24/28



Quantum Fourier transform

• Shor’s algorithm also required the inverse QFT.

• The structure of the QFT leads to a nice functional
representation using an accumulator function,
recursively defined over the input register.

•

qft :: [Qbit ]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [ ])

qftAcu :: [Qbit ]→ [Bool ]→ [Bool ]→ U

qftAcu [ ] [ ] = •

qftAcu (q : qs) (b : bs) cs = qftBase cs q 3 qftAcu qs bs (b : cs)

qftBase :: [Bool ]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [ ] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) 3 f ′ bs q (x + 1)

else f ′ bs q (x + 1)
Quantum Programming in Haskell – p.24/28



Shor’s Algorithm

• The period finding sub-routine of Shor’s algorithm can
now be given.

•

hadamards :: QInt → U

hadamards (QInt [ ]) = •

hadamards (QInt (x : xs)) = uhad x 3 hadamards (QInt xs)

shorU :: QInt → QInt → QInt → Int → U

shorU i0 i1 x n = hadamards i0 3

condQ i0 (λa → modExp n a x i1 ) 3

urev (qft i0 )

shor :: Int → Int → QIO Int

shor x n = do ((i0 , i1 ), qx)← mkQ ((0, 1), x)

applyU (shorU i0 i1 qx n)

p ← measQ i0

return p

Quantum Programming in Haskell – p.25/28



Shor’s Algorithm

• The period finding sub-routine of Shor’s algorithm can
now be given.

•

hadamards :: QInt → U

hadamards (QInt [ ]) = •

hadamards (QInt (x : xs)) = uhad x 3 hadamards (QInt xs)

shorU :: QInt → QInt → QInt → Int → U

shorU i0 i1 x n = hadamards i0 3

condQ i0 (λa → modExp n a x i1 ) 3

urev (qft i0 )

shor :: Int → Int → QIO Int

shor x n = do ((i0 , i1 ), qx)← mkQ ((0, 1), x)

applyU (shorU i0 i1 qx n)

p ← measQ i0

return p

Quantum Programming in Haskell – p.25/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.

Quantum Programming in Haskell – p.26/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.

Quantum Programming in Haskell – p.26/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.

Quantum Programming in Haskell – p.26/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.

Quantum Programming in Haskell – p.26/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.

Quantum Programming in Haskell – p.26/28



Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.
Quantum Programming in Haskell – p.26/28



Conclusions

• A Dependently typed version of QIO could give a
sound basis for reasoning about quantum
computations.

• ... so we would like to implement this.

• We are also planning at looking to extend QIO as a full
language.

• We are also looking for more examples like the Qdata
class, where ideas in functional program can be used
nicely in the quantum setting.

Quantum Programming in Haskell – p.27/28



Conclusions

• A Dependently typed version of QIO could give a
sound basis for reasoning about quantum
computations.

• ... so we would like to implement this.

• We are also planning at looking to extend QIO as a full
language.

• We are also looking for more examples like the Qdata
class, where ideas in functional program can be used
nicely in the quantum setting.

Quantum Programming in Haskell – p.27/28



Conclusions

• A Dependently typed version of QIO could give a
sound basis for reasoning about quantum
computations.

• ... so we would like to implement this.

• We are also planning at looking to extend QIO as a full
language.

• We are also looking for more examples like the Qdata
class, where ideas in functional program can be used
nicely in the quantum setting.

Quantum Programming in Haskell – p.27/28



Conclusions

• A Dependently typed version of QIO could give a
sound basis for reasoning about quantum
computations.

• ... so we would like to implement this.

• We are also planning at looking to extend QIO as a full
language.

• We are also looking for more examples like the Qdata
class, where ideas in functional program can be used
nicely in the quantum setting.

Quantum Programming in Haskell – p.27/28



Finally...

• We are presenting a paper on the Quantum IO Monad
at TFP 2008 (Trends in Functional Programming).
Soon to be available on-line:
http://www.cs.nott.ac.uk/˜asg/research.html

• The code from the implementation is also available
on-line:
http://www.cs.nott.ac.uk/˜asg/QIO/

Quantum Programming in Haskell – p.28/28



Finally...

• We are presenting a paper on the Quantum IO Monad
at TFP 2008 (Trends in Functional Programming).
Soon to be available on-line:
http://www.cs.nott.ac.uk/˜asg/research.html

• The code from the implementation is also available
on-line:
http://www.cs.nott.ac.uk/˜asg/QIO/

Quantum Programming in Haskell – p.28/28


	Introduction
	Haskell and Monads
	The Maybe Monad
	`do' notation
	The QIO Monad
	QIO Examples
	Deutsch's Algorithm
	QIO Design
	QIO Design.
	QIO Design...
	Side Conditions
	Side Conditions.
	The Monadic constructors
	Teleportation
	Teleportation.
	Teleportation..
	Running QIO Computations
	Running QIO Computations.
	Reversible Arithmetic
	Qdata
	Qdata
	Reversible Arithmetic ...
	Quantum Fourier transform
	Shor's Algorithm
	Dependent Types
	Conclusions
	Finally...

