
Quantum Programming in Haskell
with the Quantum IO Monad

Alexander S. Green and Thorsten Altenkirch

asg@cs.nott.ac.uk, txa@cs.nott.ac.uk

School of Computer Science,

The University of Nottingham

Quantum Programming in Haskell – p.1/28



Introduction

• We would like to model Quantum Computations...

• ... in a functional setting.

• The QIO Monad can be thought of as a register of
Qubits that’s controlled by a classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.
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Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• The return function lifts values of an underlying type
into the Monad.

• The >>= function lifts the application of the given
function to a result already in the Monad.
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The Maybe Monad

• The Maybe Monad can be used for functions that are
undefined on some inputs. (E.g. division by zero)

• data Maybe a = Just a | Nothing

• return x = Just x

•
(Just x ) >>= f = f x

Nothing >>= f = Nothing

• The bind function allows for an undefined result to
propagate through the rest of the computation.
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‘do’ notation

• Haskell provides the do notation to make monadic
programming easier.

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo
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The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell can be used to
help this.

•

|0〉 :: QIO Qbit

|0〉 = do qb ← mkQbit False

return x

•

|1〉 :: QIO Qbit

|1〉 = do qb ← mkQbit True

return x
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QIO Examples

• Creating the state |+〉
|+〉 :: QIO Qbit

|+〉 = do qb ← |0〉

applyU (uhad qb)

return qb

• Creating a bell state
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (cond qa (λa → if a then (unot qb)

else (•)))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)
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Deutsch’s Algorithm

•
u :: (Bool → Bool)→ Qbit → Qbit → U

u f x y = cond x (λb → if f b then unot y else •)

•

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (u f x y)

applyU (uhad x)

b ← measQ x

return b
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QIO Design

• The design allows unitaries to be defined outside of
the monadic structure...

• ... the U data-type defines the available unitaries.

• The position of two qubits can be swapped.

swap :: Qbit → Qbit → U

• A conditional unitary, depending on the value of the
given qubit, can be constructed.

cond :: Qbit → (Bool → U )→ U

• Qubits can be temporarily introduced into a unitary.

ulet :: Bool → (Qbit → U )→ U
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QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0
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QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0

Quantum Programming in Haskell – p.10/28



QIO Design.

• Single qubit rotations can be applied...

rot :: Qbit → Rotation → U

• type Rotation = ((Bool ,Bool)→ C)

• Some common rotations are defined...
rnot :: Rotation

rnot (x , y) = if x ≡ y then 0 else 1

rhad :: Rotation

rhad (x , y) = if x ∧ y then− h else h where h = (1 / sqrt 2)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase ( , ) = 0

Quantum Programming in Haskell – p.10/28



QIO Design...

• The U data-type also forms a Monoid

• There’s an identity element denoted •

• ... and an append operation denoted 3 .

• We can also define a reverse function urev :: U → U

that returns the inverse of the given unitary.

• The choice of available unitaries has been adapted as
we have implemented more quantum algorithms.

• However, there are side-conditions that need to be
imposed to ensure that all the members of U are
actually unitary.
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Side Conditions

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.
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Side Conditions.

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.
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The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



The Monadic constructors

• The Monadic constructors allow the system to deal
with the side-effects to the state arising from
measurements

• Qubits can be initialised, from a Boolean value.
mkQbit :: Bool → QIO Qbit

• Unitaries can be applied to the current state.

applyU :: U → QIO ()

• Qubits can be measured, returning a Boolean value.

measQbit :: Qbit → QIO Bool

Quantum Programming in Haskell – p.14/28



Teleportation

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq eq = do applyU (cond aq (λa →

if a then (unot eq)

else (•)))

applyU (uhad aq)

cd ← measQ (aq , eq)

return cd
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Teleportation.

bobsU :: (Bool ,Bool)→ Qbit → U

bobsU (False,False) eq = •

bobsU (False,True) eq = (unot eq)

bobsU (True,False) eq = (uZZ eq)

bobsU (True,True) eq = ((unot eq)

3 (uZZ eq))

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob eq cd = do applyU (bobsU cd eq)

return eq

Quantum Programming in Haskell – p.16/28



Teleportation..

teleportation :: Qbit → QIO Qbit

teleportation iq = do (eq1 , eq2 )← bell

cd ← alice iq eq1

tq ← bob eq2 cd

return tq
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Running QIO Computations

• We provide three evaluation functions for (classically)
simulating the running of our QIO computations.

• runQ returns a single probabilistic result.
>runQ (deutsch ¬)
True

>runQ (deutsch (λx → True))
False

• simQ returns a probability distribution of the possible
results.
>simQ (deutsch ¬)
[(True, 1.0)]
>simQ (meas bell)
[((True,True), 0.5), ((False,False), 0.5)]
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Running QIO Computations.

• There is also the runC function which efficiently
simulates computations that only use the classical
subset of U .
>runC (deutsch ¬)
*** Exception: not classical

• The runC function is useful for testing our reversible
arithmetic functions
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Reversible Arithmetic

• One of our goals was to implement Shor’s algorithm.

• The period finding sub-routine requires a function that
computes modular exponentiation.

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• To implement these functions we decided that it would
be useful to be able to define quantum data-types,
built up from qubits, and related with a classical
counter-part

• This lead to the definition of a class of quantum
data-types.
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Qdata

• The Qdata class defines functions that a pair of
corresponding classical and quantum data-types must
fulfill, within the QIO setting.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U )→ U

condQ :: qa → (a → U )→ U
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Qdata

• Booleans and Qubits form the simplest instance of the
Qdata class.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

letU b xu = ulet b xu

condQ q br = cond q br

• We have also implemented a quantum data-type QInt

related to the (positive instances of) the Haskell Int

type.
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Reversible Arithmetic ...

• The circuits in [Vedral, Barenco, Ekert. 1996] make
extensive use of auxilliary qubits...

• ... which we can handle nicely using the ulet

constructor.

•

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc =

ulet False (qadd ′ qas qbs)

where qadd ′ [ ] [ ] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc′ → carry qc qa qb qc′
3

aadd ′ qas qbs qc′
3

urev (carry qc qa qb qc′)) 3

sumq qc qa qb

• The required modular exponentiation function
( modExp ) follows nicely.
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Quantum Fourier transform

• Shor’s algorithm also required the inverse QFT.

• The structure of the QFT leads to a nice functional
representation using an accumulator function,
recursively defined over the input register.

•

qft :: [Qbit ]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [ ])

qftAcu :: [Qbit ]→ [Bool ]→ [Bool ]→ U

qftAcu [ ] [ ] = •

qftAcu (q : qs) (b : bs) cs = qftBase cs q 3 qftAcu qs bs (b : cs)

qftBase :: [Bool ]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [ ] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) 3 f ′ bs q (x + 1)

else f ′ bs q (x + 1)
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Shor’s Algorithm

• The period finding sub-routine of Shor’s algorithm can
now be given.

•

hadamards :: QInt → U

hadamards (QInt [ ]) = •

hadamards (QInt (x : xs)) = uhad x 3 hadamards (QInt xs)

shorU :: QInt → QInt → QInt → Int → U

shorU i0 i1 x n = hadamards i0 3

condQ i0 (λa → modExp n a x i1 ) 3

urev (qft i0 )

shor :: Int → Int → QIO Int

shor x n = do ((i0 , i1 ), qx)← mkQ ((0, 1), x)

applyU (shorU i0 i1 qx n)

p ← measQ i0

return p
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Dependent Types

• The fact that our side-conditions can be checked at
run-time follows from the fact that we’re classically
simulating quantum computations.

• Dependent Types give us types that can depend on
data...

• ... the data that they depend on could be a proof of
some property about the type.

• With dependent types, we could embed proofs that the
unitaries satisfy the imposed side-conditions.

• These proofs are checked at compile time by the type
checker...

• leading to a more “sound” implementation.
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Conclusions

• A Dependently typed version of QIO could give a
sound basis for reasoning about quantum
computations.

• ... so we would like to implement this.

• We are also planning at looking to extend QIO as a full
language.

• We are also looking for more examples like the Qdata
class, where ideas in functional program can be used
nicely in the quantum setting.
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Finally...

• We are presenting a paper on the Quantum IO Monad
at TFP 2008 (Trends in Functional Programming).
Soon to be available on-line:
http://www.cs.nott.ac.uk/˜asg/research.html

• The code from the implementation is also available
on-line:
http://www.cs.nott.ac.uk/˜asg/QIO/
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