The University of Nottingham

Shor in Haskell and the Quantum IO Monad

Alexander S. Green and Thorsten Altenkirch asg@cs.nott.ac.uk, txa@cs.nott.ac.uk

School of Computer Science, The University of Nottingham

Introduction

- We would like to model Quantum Computations.
- We would like to model Quantum Computations.
- The QIO Monad, can be thought of as a register of Qubits that plugs into your classical computer.

Introduction

- We would like to model Quantum Computations.
- The QIO Monad, can be thought of as a register of Qubits that plugs into your classical computer.
- It provides a framework for constructing quantum computations...

Introduction

- We would like to model Quantum Computations.
- The QIO Monad, can be thought of as a register of Qubits that plugs into your classical computer.
- It provides a framework for constructing quantum computations...
- ... and simulates the running of these computations.

Haskell and Monads

- Haskell is a pure functional programming language, so any computations that may involve side effects make use of Monads.

Haskell and Monads

- Haskell is a pure functional programming language, so any computations that may involve side effects make use of Monads.
- Monads are defined by a return function, and a bind function denoted ($\gg=$)

Haskell and Monads

- Haskell is a pure functional programming language, so any computations that may involve side effects make use of Monads.
- Monads are defined by a return function, and a bind function denoted ($\gg=$)
class Monad m where

$$
\begin{aligned}
& (\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b \\
& \text { return }:: a \rightarrow m a
\end{aligned}
$$

Haskell and Monads

- Haskell is a pure functional programming language, so any computations that may involve side effects make use of Monads.
- Monads are defined by a return function, and a bind function denoted ($\gg=$)
class Monad m where

$$
\begin{aligned}
& (\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b \\
& \text { return }:: a \rightarrow m a
\end{aligned}
$$

- Haskell provides the do notation to make monadic programming easier.

'do’ notation

- IO in Haskell takes place in the IO Monad.

'do’ notation

界

- IO in Haskell takes place in the IO Monad.
- For example, echoing a character to the screen
getChar :: IO Char
putChar :: Char \rightarrow IO ()

'do’ notation

界

- IO in Haskell takes place in the IO Monad.
- For example, echoing a character to the screen

$$
\begin{aligned}
& \text { getChar :: IO Char } \\
& \text { putChar :: Char } \rightarrow \text { IO () }
\end{aligned}
$$

echo :: IO ()

$$
\text { echo }=\text { getChar } \gg=(\lambda c \rightarrow \text { putChar } c) \gg \text { echo }
$$

'do' notation

界

- IO in Haskell takes place in the IO Monad.
- For example, echoing a character to the screen

$$
\begin{aligned}
& \text { getChar :: IO Char } \\
& \text { putChar :: Char } \rightarrow \text { IO () }
\end{aligned}
$$

echo :: IO ()

$$
\text { echo }=\text { getChar } \gg=(\lambda c \rightarrow \text { putChar } c) \gg \text { echo }
$$

- or in do notation

'do' notation

界

- IO in Haskell takes place in the IO Monad.
- For example, echoing a character to the screen

$$
\begin{aligned}
& \text { getChar :: IO Char } \\
& \text { putChar :: Char } \rightarrow \text { IO () }
\end{aligned}
$$

echo :: IO ()

$$
\text { echo }=\text { getChar } \gg=(\lambda c \rightarrow \text { putChar } c) \gg \text { echo }
$$

- or in do notation

$$
\begin{gathered}
\text { echo }=\operatorname{do} c \leftarrow \text { getChar } \\
\text { putChar } c \\
\text { echo }
\end{gathered}
$$

The QIO Monad

- The QIO Monad has been designed so that Quantum computations can be defined within Haskell.

The QIO Monad

鿊

- The QIO Monad has been designed so that Quantum computations can be defined within Haskell.

The do notation provided by Haskell is very useful for this purpose.

The QIO Monad

- The QIO Monad has been designed so that Quantum computations can be defined within Haskell.
- The do notation provided by Haskell is very useful for this purpose.

$$
\begin{aligned}
& q 0:: \text { QIO Qbit } \\
& q 0=\text { do } q b \leftarrow m k Q b i t \text { False } \\
& \quad \text { return } x
\end{aligned}
$$

alo Examples Minimision

- Creating the state $|+\rangle$

$$
\begin{aligned}
& q \text { Plus :: QIO Qbit } \\
& q P l u s=\text { do } q b \leftarrow q 0 \\
& \qquad \quad \operatorname{apply} U(\text { uhad } q b) \\
& \quad \text { return } q b
\end{aligned}
$$

- Creating a bell state

$$
\begin{aligned}
& \text { share }:: \text { Qbit } \rightarrow \text { QIO Qbit } \\
& \text { share } q a=\text { do } q b \leftarrow q 0 \\
& \qquad \begin{array}{c}
\text { apply } U(\text { cond } q a(\lambda a \rightarrow \text { if a then (unot } q b) \\
\\
\quad \text { else }(\text { mempty }))) \\
\text { return } q b \\
\text { bell }:: Q I O(Q b i t, Q b i t) \\
\text { bell }=\text { do } q a \leftarrow q P l u s \\
q b \leftarrow \text { share } q a \\
\text { return }(q a, q b)
\end{array}
\end{aligned}
$$

QIO Examples

The University of
Nottingham

Deutsch's Algorithm

$$
\begin{aligned}
& u::(\text { Bool } \rightarrow \text { Bool }) \rightarrow \text { Qbit } \rightarrow \text { Qbit } \rightarrow U \\
& u f x y=\text { cond } x(\lambda b \rightarrow \text { if } f \text { then unot } y \text { else mempty }) \\
& \text { deutsch }::(\text { Bool } \rightarrow \text { Bool }) \rightarrow \text { QIO Bool } \\
& \text { deutsch } f=\text { do } x \leftarrow q \text { Plus } \\
& y \leftarrow q \text { Minus } \\
& \text { applyU }(u f x y) \\
& \text { apply } U(\text { uhad } x) \\
& b \leftarrow \text { meas } Q x \\
& \text { return } b
\end{aligned}
$$

QIO Design

- We have single qubit rotations, swaps, and conditionals.

QIO Design

- We have single qubit rotations, swaps, and conditionals.
- We also have sequential composition in the form of the monoidal append operation, with identity mempty.

QIO Design

- We have single qubit rotations, swaps, and conditionals.
- We also have sequential composition in the form of the monoidal append operation, with identity mempty.
- QIO is for helping develop quantum algorithms, so aspects of its design follows from implementing existing algorithms.

QIO Design.

- Classically, the (bit-wise) addition circuit isn't reversible.

QIO Design.

- Classically, the (bit-wise) addition circuit isn't reversible.

- But this can seemingly be corrected

QIO Design..

- Classically, a full adder is created by feeding in the overflow from the previous bit-wise adder.

QIO Design..

药

- Classically, a full adder is created by feeding in the overflow from the previous bit-wise adder.
- However, in the quantum case, we need an auxiliary register of qubits to enable this.

QIO Design..

- Classically, a full adder is created by feeding in the overflow from the previous bit-wise adder.
- However, in the quantum case, we need an auxiliary register of qubits to enable this.
- We must also be careful to undo our carry operations so that the auxiliary qubits are not entangled with our result.

QIO Design..

- Classically, a full adder is created by feeding in the overflow from the previous bit-wise adder.
- However, in the quantum case, we need an auxiliary register of qubits to enable this.
- We must also be careful to undo our carry operations so that the auxiliary qubits are not entangled with our result.
- The final overflow can be stored in a single qubit, giving rise to

$$
\text { adder }::[\text { Qbit }] \rightarrow[\text { Qbit }] \rightarrow[\text { Qbit }] \rightarrow \text { Qbit } \rightarrow U
$$

QIO Design...

- With this definition, it would be up to the programmer to keep track of all the auxiliary qubits.

QIO Design

药

- With this definition, it would be up to the programmer to keep track of all the auxiliary qubits. We can introduce the ulet constructor ulet $::$ Bool $\rightarrow($ Qbit $\rightarrow U) \rightarrow U$

QIO Design

The University of Nottingham

- With this definition, it would be up to the programmer to keep track of all the auxiliary qubits.
- We can introduce the ulet constructor

$$
\text { ulet :: Bool } \rightarrow(\text { Qbit } \rightarrow U) \rightarrow U
$$

- It is up to the programmer to ensure that the resulting computation is still a valid unitary.

QIO Design

H

- With this definition, it would be up to the programmer to keep track of all the auxiliary qubits.
- We can introduce the ulet constructor

$$
\text { ulet }:: \text { Bool } \rightarrow(\text { Qbit } \rightarrow U) \rightarrow U
$$

- It is up to the programmer to ensure that the resulting computation is still a valid unitary.
- In Haskell, this side-condition can only be checked at run-time.

QIO Design

药

Using a ulet in the definition of the adder function we now have the type adder $::[$ Qbit $] \rightarrow[$ Qbit $] \rightarrow$ Qbit $\rightarrow U$

QIO Design

r

- Using a ulet in the definition of the adder function we now have the type
adder $::[$ Qbit $] \rightarrow[$ Qbit $] \rightarrow$ Qbit $\rightarrow U$
- We can actually define the type
newtype QInt $=$ QInt [Qbit]
which ensures a fixed size of quantum register.

QIO Design

I

- Using a ulet in the definition of the adder function we now have the type
adder $::[$ Qbit $] \rightarrow[$ Qbit $] \rightarrow$ Qbit $\rightarrow U$
- We can actually define the type
newtype QInt $=$ QInt [Qbit]
which ensures a fixed size of quantum register.
- So the adder can have type

$$
\text { adder }:: \text { QInt } \rightarrow \text { QInt } \rightarrow \text { Qbit } \rightarrow U
$$

Qdata

The University of Nottingham

- The QInt mentioned above is an example of a quantum data type.

We have implemented a class of quantum data types that formalise the correspondence between classical and quantum data.

Qdata

- The QInt mentioned above is an example of a quantum data type.
- We have implemented a class of quantum data types that formalise the correspondence between classical and quantum data.
- For example, the simplest quantum data type is the Qubit, which corresponds to the classical Boolean data type.
instance Qdata Bool Qbit where ...

Qdata

- The QInt mentioned above is an example of a quantum data type.
- We have implemented a class of quantum data types that formalise the correspondence between classical and quantum data.
- For example, the simplest quantum data type is the Qubit, which corresponds to the classical Boolean data type.
instance Qdata Bool Qbit where ...
- This can be extended to lists and pairs...

Qdata

- The QInt mentioned above is an example of a quantum data type.
- We have implemented a class of quantum data types that formalise the correspondence between classical and quantum data.
- For example, the simplest quantum data type is the Qubit, which corresponds to the classical Boolean data type. instance Qdata Bool Qbit where ...
- This can be extended to lists and pairs...
- and the QInt used above instance Qdata Int QInt where ...

Qdata.

- The Qdata class specifies that any instance of the class provides the necessary functions.

Qdata.

- The Qdata class specifies that any instance of the class provides the necessary functions.
class Qdata a qa|a $\rightarrow q a, q a \rightarrow a$ where

$$
\begin{aligned}
& m k Q:: a \rightarrow Q I O q a \\
& \text { meas } Q:: q a \rightarrow Q I O a \\
& \text { let } U:: a \rightarrow(q a \rightarrow U) \rightarrow U \\
& \operatorname{cond} Q:: q a \rightarrow(a \rightarrow U) \rightarrow U
\end{aligned}
$$

Qdata.

- The Qdata class specifies that any instance of the class provides the necessary functions.

$$
\begin{aligned}
& \text { class } Q d a t a \text { a } q a \mid a \rightarrow q a, q a \rightarrow a \text { where } \\
& \text { mk } Q:: a \rightarrow Q I O q a \\
& \text { meas } Q:: q a \rightarrow Q I O a \\
& \text { let } U:: a \rightarrow(q a \rightarrow U) \rightarrow U \\
& \operatorname{cond} Q:: q a \rightarrow(a \rightarrow U) \rightarrow U
\end{aligned}
$$

- we shall see what cond Q is shortly.

Qdata..

其

- The full Boolean-Qubit instance instance Qdata Bool Qbit where

$$
\begin{aligned}
& m k Q=\text { mkQbit } \\
& \text { meas } Q=\text { meas } Q b i t \\
& \text { let } U \text { bxu }=\text { ulet } b x u \\
& \text { cond } Q \text { q } b r=\text { cond } q b r
\end{aligned}
$$

Shor's Algorithm?

- What do we need to implement Shor's algorithm ?

Shor's Algorithm ?

- What do we need to implement Shor's algorithm ?

Shor's Algorithm ?

The University of Nottingham

- What do we need to implement Shor's algorithm ?

- We can already create the $H^{\otimes t}$ with the available single qubit rotations, but we need to implement the (inverse) Quantum Fourier Transform, and a means of modular exponentiation.

QFT

The University of Nottingham

QFT can be given as

which is the (bit-wise) QFT for an n-qubit register.

- Looking at the given QFT we can see that the action to be performed on each qubit depends on the value of other qubits in the register.
- Looking at the given QFT we can see that the action to be performed on each qubit depends on the value of other qubits in the register.
- This can be done using conditional statements, but this is also where the cond Q constructor from the Qdata class is useful.
- Looking at the given QFT we can see that the action to be performed on each qubit depends on the value of other qubits in the register.
- This can be done using conditional statements, but this is also where the cond Q constructor from the Qdata class is useful.
- The condQ function allows conditional unitaries to be defined by functions on the classical counterpart of a quantum data structure.

$$
\text { cond } Q:: q a \rightarrow(a \rightarrow U) \rightarrow U
$$

$$
\begin{aligned}
& \text { qft }::[\text { Qbit }] \rightarrow U \\
& \text { qft } q s=\text { condQ } q s(\lambda b s \rightarrow \text { qftAcu qs bs }[]) \\
& \text { qftAcu }::[\text { Qbit }] \rightarrow[\text { Bool }] \rightarrow[\text { Bool }] \rightarrow U \\
& \text { qftAcu }[][]-=\text { mempty } \\
& \text { qftAcu }(q: q s)(b: b s) \text { cs }=\text { qftBase cs } q+\text { qftAcu } q s \text { bs }(b: c s) \\
& \text { qftBase }::[\text { Bool }] \rightarrow \text { Qbit } \rightarrow U \\
& \text { qftBase bs } q=f^{\prime} \text { bs } q 2 \\
& \text { where } f^{\prime}[] q-=\text { uhad } q \\
& f^{\prime}(b: b s) q x=\text { if } b \text { then }(\operatorname{rotK} x q)+f^{\prime} \text { bs } q(x+1) \\
& \quad \text { else } f^{\prime} b s q(x+1)
\end{aligned}
$$

Modular Exponentiation

- To define modular exponentiation in QIO, it is necessary to build up a set of reversible arithmetic functions.
- We have already seen that we can create an adder function

Modular Exponentiation

- To define modular exponentiation in QIO, it is necessary to build up a set of reversible arithmetic functions.
- We have already seen that we can create an adder function
- We have created a set of quantum arithmetic functions following the design of the circuits in [Vedral, Barenco, Ekert. 1996].

Modular Exponentiation

- To define modular exponentiation in QIO, it is necessary to build up a set of reversible arithmetic functions.
- We have already seen that we can create an adder function
- We have created a set of quantum arithmetic functions following the design of the circuits in [Vedral, Barenco, Ekert. 1996].
- So we have the modular exponentiation function of type

$$
\begin{aligned}
& \text { modExp }:: \text { Int } \rightarrow \text { Int } \rightarrow Q \text { Int } \rightarrow Q \text { Int } \rightarrow U \\
& \text { modExp } n \text { a } x \text { } o=\ldots
\end{aligned}
$$

giving the function $x^{a} \bmod n$.

Conclusion

- We have shown that we have all the necessary functions to put together Shor's algorithm in the QIO Monad.

Conclusion

药

- We have shown that we have all the necessary functions to put together Shor's algorithm in the QIO Monad.

We have shown how implementing Shor's algorithm has lead to design changes to the QIO Monad.

Conclusion

The University of
Nottingham

- We have shown that we have all the necessary functions to put together Shor's algorithm in the QIO Monad.
- We have shown how implementing Shor's algorithm has lead to design changes to the QIO Monad.
- We have started using the features of functional programming to enrich what we can do with the QIO Monad (ie. the Qdata class).

Further Work

- We would like to use the QIO Monad to start reasoning about quantum computation in general.

Further Work

The University of Nottingham

- We would like to use the QIO Monad to start reasoning about quantum computation in general.
- We would like to formalise QIO within the Coq proof assistant program.

Further Work

The University of
Nottingham

- We would like to use the QIO Monad to start reasoning about quantum computation in general.
- We would like to formalise QIO within the Coq proof assistant program.
- The type system in Coq will allow the formalisation of the side conditions imposed on the ulet constructor.

