
Shor in Haskell

and the Quantum IO Monad

Alexander S. Green and Thorsten Altenkirch

asg@cs.nott.ac.uk, txa@cs.nott.ac.uk

School of Computer Science,

The University of Nottingham

Shor in Haskell – p.1/22

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Shor in Haskell – p.2/22

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Shor in Haskell – p.2/22

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Shor in Haskell – p.2/22

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

Shor in Haskell – p.2/22

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.

Shor in Haskell – p.3/22

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.

Shor in Haskell – p.3/22

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.

Shor in Haskell – p.3/22

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.

Shor in Haskell – p.3/22

‘do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Shor in Haskell – p.4/22

‘do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Shor in Haskell – p.4/22

‘do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Shor in Haskell – p.4/22

‘do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Shor in Haskell – p.4/22

‘do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

Shor in Haskell – p.4/22

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

•

q0 :: QIO Qbit

q0 = do qb ← mkQbit False

return x

Shor in Haskell – p.5/22

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

•

q0 :: QIO Qbit

q0 = do qb ← mkQbit False

return x

Shor in Haskell – p.5/22

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

•

q0 :: QIO Qbit

q0 = do qb ← mkQbit False

return x

Shor in Haskell – p.5/22

QIO Examples

• Creating the state |+〉
qPlus :: QIO Qbit

qPlus = do qb ← q0

applyU (uhad qb)

return qb

• Creating a bell state
share :: Qbit → QIO Qbit

share qa = do qb ← q0

applyU (cond qa (λa → if a then (unot qb)

else (mempty)))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← qPlus

qb ← share qa

return (qa, qb)

Shor in Haskell – p.6/22

QIO Examples

• Creating the state |+〉
qPlus :: QIO Qbit

qPlus = do qb ← q0

applyU (uhad qb)

return qb

• Creating a bell state
share :: Qbit → QIO Qbit

share qa = do qb ← q0

applyU (cond qa (λa → if a then (unot qb)

else (mempty)))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← qPlus

qb ← share qa

return (qa, qb)
Shor in Haskell – p.6/22

QIO Examples

• Deutsch’s Algorithm
u :: (Bool → Bool)→ Qbit → Qbit → U

u f x y = cond x (λb → if f b then unot y else mempty)

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← qPlus

y ← qMinus

applyU (u f x y)

applyU (uhad x)

b ← measQ x

return b

Shor in Haskell – p.7/22

QIO Design

• We have single qubit rotations, swaps, and
conditionals.

• We also have sequential composition in the form of the
monoidal append operation, with identity mempty.

• QIO is for helping develop quantum algorithms, so
aspects of its design follows from implementing
existing algorithms.

Shor in Haskell – p.8/22

QIO Design

• We have single qubit rotations, swaps, and
conditionals.

• We also have sequential composition in the form of the
monoidal append operation, with identity mempty.

• QIO is for helping develop quantum algorithms, so
aspects of its design follows from implementing
existing algorithms.

Shor in Haskell – p.8/22

QIO Design

• We have single qubit rotations, swaps, and
conditionals.

• We also have sequential composition in the form of the
monoidal append operation, with identity mempty.

• QIO is for helping develop quantum algorithms, so
aspects of its design follows from implementing
existing algorithms.

Shor in Haskell – p.8/22

QIO Design.

• Classically, the (bit-wise) addition circuit isn’t
reversible.

oin

Addera a + b(+oin)

b oout

• But this can seemingly be corrected

oin

Adder

a

a a + b(+oin)

b oout

Shor in Haskell – p.9/22

QIO Design.

• Classically, the (bit-wise) addition circuit isn’t
reversible.

oin

Addera a + b(+oin)

b oout

• But this can seemingly be corrected

oin

Adder

a

a a + b(+oin)

b oout

Shor in Haskell – p.9/22

QIO Design..

• Classically, a full adder is created by feeding in the
overflow from the previous bit-wise adder.

• However, in the quantum case, we need an auxiliary
register of qubits to enable this.

• We must also be careful to undo our carry operations
so that the auxiliary qubits are not entangled with our
result.

• The final overflow can be stored in a single qubit,
giving rise to

adder :: [Qbit]→ [Qbit]→ [Qbit]→ Qbit → U

Shor in Haskell – p.10/22

QIO Design..

• Classically, a full adder is created by feeding in the
overflow from the previous bit-wise adder.

• However, in the quantum case, we need an auxiliary
register of qubits to enable this.

• We must also be careful to undo our carry operations
so that the auxiliary qubits are not entangled with our
result.

• The final overflow can be stored in a single qubit,
giving rise to

adder :: [Qbit]→ [Qbit]→ [Qbit]→ Qbit → U

Shor in Haskell – p.10/22

QIO Design..

• Classically, a full adder is created by feeding in the
overflow from the previous bit-wise adder.

• However, in the quantum case, we need an auxiliary
register of qubits to enable this.

• We must also be careful to undo our carry operations
so that the auxiliary qubits are not entangled with our
result.

• The final overflow can be stored in a single qubit,
giving rise to

adder :: [Qbit]→ [Qbit]→ [Qbit]→ Qbit → U

Shor in Haskell – p.10/22

QIO Design..

• Classically, a full adder is created by feeding in the
overflow from the previous bit-wise adder.

• However, in the quantum case, we need an auxiliary
register of qubits to enable this.

• We must also be careful to undo our carry operations
so that the auxiliary qubits are not entangled with our
result.

• The final overflow can be stored in a single qubit,
giving rise to

adder :: [Qbit]→ [Qbit]→ [Qbit]→ Qbit → U

Shor in Haskell – p.10/22

QIO Design...

• With this definition, it would be up to the programmer
to keep track of all the auxiliary qubits.

• We can introduce the ulet constructor
ulet :: Bool → (Qbit → U)→ U

• It is up to the programmer to ensure that the resulting
computation is still a valid unitary.

• In Haskell, this side-condition can only be checked at
run-time.

Shor in Haskell – p.11/22

QIO Design...

• With this definition, it would be up to the programmer
to keep track of all the auxiliary qubits.

• We can introduce the ulet constructor
ulet :: Bool → (Qbit → U)→ U

• It is up to the programmer to ensure that the resulting
computation is still a valid unitary.

• In Haskell, this side-condition can only be checked at
run-time.

Shor in Haskell – p.11/22

QIO Design...

• With this definition, it would be up to the programmer
to keep track of all the auxiliary qubits.

• We can introduce the ulet constructor
ulet :: Bool → (Qbit → U)→ U

• It is up to the programmer to ensure that the resulting
computation is still a valid unitary.

• In Haskell, this side-condition can only be checked at
run-time.

Shor in Haskell – p.11/22

QIO Design...

• With this definition, it would be up to the programmer
to keep track of all the auxiliary qubits.

• We can introduce the ulet constructor
ulet :: Bool → (Qbit → U)→ U

• It is up to the programmer to ensure that the resulting
computation is still a valid unitary.

• In Haskell, this side-condition can only be checked at
run-time.

Shor in Haskell – p.11/22

QIO Design....

• Using a ulet in the definition of the adder function we
now have the type

adder :: [Qbit]→ [Qbit]→ Qbit → U

• We can actually define the type

newtype QInt = QInt [Qbit]

which ensures a fixed size of quantum register.

• So the adder can have type

adder :: QInt → QInt → Qbit → U

Shor in Haskell – p.12/22

QIO Design....

• Using a ulet in the definition of the adder function we
now have the type

adder :: [Qbit]→ [Qbit]→ Qbit → U

• We can actually define the type

newtype QInt = QInt [Qbit]

which ensures a fixed size of quantum register.

• So the adder can have type

adder :: QInt → QInt → Qbit → U

Shor in Haskell – p.12/22

QIO Design....

• Using a ulet in the definition of the adder function we
now have the type

adder :: [Qbit]→ [Qbit]→ Qbit → U

• We can actually define the type

newtype QInt = QInt [Qbit]

which ensures a fixed size of quantum register.

• So the adder can have type

adder :: QInt → QInt → Qbit → U

Shor in Haskell – p.12/22

Qdata

• The QInt mentioned above is an example of a
quantum data type.

• We have implemented a class of quantum data types
that formalise the correspondence between classical
and quantum data.

• For example, the simplest quantum data type is the
Qubit, which corresponds to the classical Boolean data
type.

instance Qdata Bool Qbit where ...

• This can be extended to lists and pairs...

• and the QInt used above
instance Qdata Int QInt where ...

Shor in Haskell – p.13/22

Qdata

• The QInt mentioned above is an example of a
quantum data type.

• We have implemented a class of quantum data types
that formalise the correspondence between classical
and quantum data.

• For example, the simplest quantum data type is the
Qubit, which corresponds to the classical Boolean data
type.

instance Qdata Bool Qbit where ...

• This can be extended to lists and pairs...

• and the QInt used above
instance Qdata Int QInt where ...

Shor in Haskell – p.13/22

Qdata

• The QInt mentioned above is an example of a
quantum data type.

• We have implemented a class of quantum data types
that formalise the correspondence between classical
and quantum data.

• For example, the simplest quantum data type is the
Qubit, which corresponds to the classical Boolean data
type.

instance Qdata Bool Qbit where ...

• This can be extended to lists and pairs...

• and the QInt used above
instance Qdata Int QInt where ...

Shor in Haskell – p.13/22

Qdata

• The QInt mentioned above is an example of a
quantum data type.

• We have implemented a class of quantum data types
that formalise the correspondence between classical
and quantum data.

• For example, the simplest quantum data type is the
Qubit, which corresponds to the classical Boolean data
type.

instance Qdata Bool Qbit where ...

• This can be extended to lists and pairs...

• and the QInt used above
instance Qdata Int QInt where ...

Shor in Haskell – p.13/22

Qdata

• The QInt mentioned above is an example of a
quantum data type.

• We have implemented a class of quantum data types
that formalise the correspondence between classical
and quantum data.

• For example, the simplest quantum data type is the
Qubit, which corresponds to the classical Boolean data
type.

instance Qdata Bool Qbit where ...

• This can be extended to lists and pairs...

• and the QInt used above
instance Qdata Int QInt where ...

Shor in Haskell – p.13/22

Qdata.

• The Qdata class specifies that any instance of the class
provides the necessary functions.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U)→ U

condQ :: qa → (a → U)→ U

• we shall see what condQ is shortly.

Shor in Haskell – p.14/22

Qdata.

• The Qdata class specifies that any instance of the class
provides the necessary functions.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U)→ U

condQ :: qa → (a → U)→ U

• we shall see what condQ is shortly.

Shor in Haskell – p.14/22

Qdata.

• The Qdata class specifies that any instance of the class
provides the necessary functions.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

letU :: a → (qa → U)→ U

condQ :: qa → (a → U)→ U

• we shall see what condQ is shortly.

Shor in Haskell – p.14/22

Qdata..

• The full Boolean-Qubit instance
instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

letU b xu = ulet b xu

condQ q br = cond q br

Shor in Haskell – p.15/22

Shor’s Algorithm ?

• What do we need to implement Shor’s algorithm ?

•

|0〉 / H⊗t

|j〉
• QFT † ?>=<89:;M

|1〉 / xjmodN

• We can already create the H⊗t with the available
single qubit rotations, but we need to implement the
(inverse) Quantum Fourier Transform, and a means of
modular exponentiation.

Shor in Haskell – p.16/22

Shor’s Algorithm ?

• What do we need to implement Shor’s algorithm ?

•

|0〉 / H⊗t

|j〉
• QFT † ?>=<89:;M

|1〉 / xjmodN

• We can already create the H⊗t with the available
single qubit rotations, but we need to implement the
(inverse) Quantum Fourier Transform, and a means of
modular exponentiation.

Shor in Haskell – p.16/22

Shor’s Algorithm ?

• What do we need to implement Shor’s algorithm ?

•

|0〉 / H⊗t

|j〉
• QFT † ?>=<89:;M

|1〉 / xjmodN

• We can already create the H⊗t with the available
single qubit rotations, but we need to implement the
(inverse) Quantum Fourier Transform, and a means of
modular exponentiation.

Shor in Haskell – p.16/22

QFT

• QFT can be given as
|j0, ..., jn〉

↓

(|0〉+ e2πi0.jn |1〉)(|0〉+ e2πi0.j
n−1jn |1〉) · · · (|0〉+ e2πi0.j1j2···jn |1〉)

2n/2

which is the (bit-wise) QFT for an n-qubit register.

Shor in Haskell – p.17/22

QFT.

• Looking at the given QFT we can see that the action to
be performed on each qubit depends on the value of
other qubits in the register.

• This can be done using conditional statements, but
this is also where the condQ constructor from the
Qdata class is useful.

• The condQ function allows conditional unitaries to be
defined by functions on the classical counterpart of a
quantum data structure.

condQ :: qa → (a → U)→ U

Shor in Haskell – p.18/22

QFT.

• Looking at the given QFT we can see that the action to
be performed on each qubit depends on the value of
other qubits in the register.

• This can be done using conditional statements, but
this is also where the condQ constructor from the
Qdata class is useful.

• The condQ function allows conditional unitaries to be
defined by functions on the classical counterpart of a
quantum data structure.

condQ :: qa → (a → U)→ U

Shor in Haskell – p.18/22

QFT.

• Looking at the given QFT we can see that the action to
be performed on each qubit depends on the value of
other qubits in the register.

• This can be done using conditional statements, but
this is also where the condQ constructor from the
Qdata class is useful.

• The condQ function allows conditional unitaries to be
defined by functions on the classical counterpart of a
quantum data structure.

condQ :: qa → (a → U)→ U

Shor in Haskell – p.18/22

QFT..

•
qft :: [Qbit]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [])

qftAcu :: [Qbit]→ [Bool]→ [Bool]→ U

qftAcu [] [] = mempty

qftAcu (q : qs) (b : bs) cs = qftBase cs q ++ qftAcu qs bs (b : cs)

qftBase :: [Bool]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) ++ f ′ bs q (x + 1)

else f ′ bs q (x + 1)

Shor in Haskell – p.19/22

Modular Exponentiation

• To define modular exponentiation in QIO, it is
necessary to build up a set of reversible arithmetic
functions.

• We have already seen that we can create an adder
function

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• So we have the modular exponentiation function of
type

modExp :: Int → Int → QInt → QInt → U

modExp n a x o = ...

giving the function xamodn.

Shor in Haskell – p.20/22

Modular Exponentiation

• To define modular exponentiation in QIO, it is
necessary to build up a set of reversible arithmetic
functions.

• We have already seen that we can create an adder
function

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• So we have the modular exponentiation function of
type

modExp :: Int → Int → QInt → QInt → U

modExp n a x o = ...

giving the function xamodn.

Shor in Haskell – p.20/22

Modular Exponentiation

• To define modular exponentiation in QIO, it is
necessary to build up a set of reversible arithmetic
functions.

• We have already seen that we can create an adder
function

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• So we have the modular exponentiation function of
type

modExp :: Int → Int → QInt → QInt → U

modExp n a x o = ...

giving the function xamodn.

Shor in Haskell – p.20/22

Modular Exponentiation

• To define modular exponentiation in QIO, it is
necessary to build up a set of reversible arithmetic
functions.

• We have already seen that we can create an adder
function

• We have created a set of quantum arithmetic functions
following the design of the circuits in [Vedral,
Barenco, Ekert. 1996].

• So we have the modular exponentiation function of
type

modExp :: Int → Int → QInt → QInt → U

modExp n a x o = ...

giving the function xamodn.
Shor in Haskell – p.20/22

Conclusion

• We have shown that we have all the necessary
functions to put together Shor’s algorithm in the QIO
Monad.

• We have shown how implementing Shor’s algorithm
has lead to design changes to the QIO Monad.

• We have started using the features of functional
programming to enrich what we can do with the QIO
Monad (ie. the Qdata class).

Shor in Haskell – p.21/22

Conclusion

• We have shown that we have all the necessary
functions to put together Shor’s algorithm in the QIO
Monad.

• We have shown how implementing Shor’s algorithm
has lead to design changes to the QIO Monad.

• We have started using the features of functional
programming to enrich what we can do with the QIO
Monad (ie. the Qdata class).

Shor in Haskell – p.21/22

Conclusion

• We have shown that we have all the necessary
functions to put together Shor’s algorithm in the QIO
Monad.

• We have shown how implementing Shor’s algorithm
has lead to design changes to the QIO Monad.

• We have started using the features of functional
programming to enrich what we can do with the QIO
Monad (ie. the Qdata class).

Shor in Haskell – p.21/22

Further Work

• We would like to use the QIO Monad to start
reasoning about quantum computation in general.

• We would like to formalise QIO within the Coq proof
assistant program.

• The type system in Coq will allow the formalisation of
the side conditions imposed on the ulet constructor.

• Thank you all for listening!

Shor in Haskell – p.22/22

Further Work

• We would like to use the QIO Monad to start
reasoning about quantum computation in general.

• We would like to formalise QIO within the Coq proof
assistant program.

• The type system in Coq will allow the formalisation of
the side conditions imposed on the ulet constructor.

• Thank you all for listening!

Shor in Haskell – p.22/22

Further Work

• We would like to use the QIO Monad to start
reasoning about quantum computation in general.

• We would like to formalise QIO within the Coq proof
assistant program.

• The type system in Coq will allow the formalisation of
the side conditions imposed on the ulet constructor.

• Thank you all for listening!

Shor in Haskell – p.22/22

	Introduction
	Haskell and Monads
	`do' notation
	The QIO Monad
	QIO Examples
	QIO Examples
	QIO Design
	QIO Design.
	QIO Design..
	QIO Design...
	QIO Design....
	Qdata
	Qdata.
	Qdata..
	Shor's Algorithm ?
	QFT
	QFT.
	QFT..
	Modular Exponentiation
	Conclusion
	Further Work

