
From reversible to irreversible
computations

Alexander S. Green and Thorsten Altenkirch

{asg,txa}@cs.nott.ac.uk

Foundations of Programming Group,

School of Computer Science & IT,

University of Nottingham

From reversible to irreversible computations – p.1/35

Structure of Talk

Introduction.
Reversible Computation.
Irreversible Computation.
The Three Laws (of Equivalence).
Using the Three Laws.
Conclusions and Further Work.

From reversible to irreversible computations – p.2/35

Introduction

• We’re extending on previous work by Thorsten Altenkirch and
Jonathan Grattage on compiling QML [AG05].

From reversible to irreversible computations – p.3/35

Introduction

• We’re extending on previous work by Thorsten Altenkirch and
Jonathan Grattage on compiling QML [AG05].

• We’d like to model irreversible computations as a derived notion
from reversible computations.

From reversible to irreversible computations – p.3/35

Reversible Computation

• We introduce the groupoid FxCR to model reversible
computation.

From reversible to irreversible computations – p.4/35

Reversible Computation

• We introduce the groupoid FxCR to model reversible
computation.

• For every morphism ψ ∈ FxCR(a, b)

there is an inverse, ψ−1 ∈ FxCR(b, a) .

From reversible to irreversible computations – p.4/35

Reversible Computation

• We introduce the groupoid FxCR to model reversible
computation.

• For every morphism ψ ∈ FxCR(a, b)

there is an inverse, ψ−1 ∈ FxCR(b, a) .

• Such that ψ, ψ−1 are an isomorphism.

From reversible to irreversible computations – p.4/35

Reversible Computation

• We introduce the groupoid FxCR to model reversible
computation.

• For every morphism ψ ∈ FxCR(a, b)

there is an inverse, ψ−1 ∈ FxCR(b, a) .

• Such that ψ, ψ−1 are an isomorphism.

• We assume the groupoid is strict, so we can denote:

FxCR a = FxCR(a, a) .

From reversible to irreversible computations – p.4/35

Reversible Computation.

• We also assume that FxCR has a strict monoidal structure.

From reversible to irreversible computations – p.5/35

Reversible Computation.

• We also assume that FxCR has a strict monoidal structure.

• The ⊗ operation corresponds to parallel composition.

From reversible to irreversible computations – p.5/35

Reversible Computation.

• We also assume that FxCR has a strict monoidal structure.

• The ⊗ operation corresponds to parallel composition.

• We can characterise the morphisms, i.e. circuits, in FxCRa

inductively.

From reversible to irreversible computations – p.5/35

Reversible Computation..

• - wires - Given a bijection on initial segments φ : [a] ≃ [a] we

write wiresφ ∈ FxCR a for the associated rewiring.

From reversible to irreversible computations – p.6/35

Reversible Computation..

• - wires - Given a bijection on initial segments φ : [a] ≃ [a] we

write wiresφ ∈ FxCR a for the associated rewiring.

• E.g.

x0 ??
? x1

x1

���
??

? x2

x2

��� x0

would have φ(0) = 2, φ(1) = 0, and φ(2) = 1.

From reversible to irreversible computations – p.6/35

Reversible Computation..

• - wires - Given a bijection on initial segments φ : [a] ≃ [a] we

write wiresφ ∈ FxCR a for the associated rewiring.

• E.g.

x0 ??
? x1

x1

���
??

? x2

x2

��� x0

would have φ(0) = 2, φ(1) = 0, and φ(2) = 1.

• The identity, ida , is a special case of wires.

From reversible to irreversible computations – p.6/35

Reversible Computation...

• - sequential composition - given ψ, φ ∈ FxCRa we construct

φ ◦ ψ ∈ FxCRa.

ψ φ

_ _ _ _�

�

�

�
_ _ _ _

From reversible to irreversible computations – p.7/35

Reversible Computation...

• - sequential composition - given ψ, φ ∈ FxCRa we construct

φ ◦ ψ ∈ FxCRa.

ψ φ

_ _ _ _�

�

�

�
_ _ _ _

• the inverse is constructed using φ−1 and ψ−1 to give ψ−1 ◦ φ−1.

φ−1 ψ−1

_ _ _ _ _ _�

�

�

�
_ _ _ _ _ _

From reversible to irreversible computations – p.7/35

Reversible Computation....

• - parallel composition - given ψ ∈ FxCRa and φ ∈ FxCRb we can

construct ψ ⊗ φ ∈ FxCR(a⊗ b).

ψ

φ

_ _�

�

�

�

�

�

�

�
_ _

From reversible to irreversible computations – p.8/35

Reversible Computation....

• - parallel composition - given ψ ∈ FxCRa and φ ∈ FxCRb we can

construct ψ ⊗ φ ∈ FxCR(a⊗ b).

ψ

φ

_ _�

�

�

�

�

�

�

�
_ _

• the inverse is constructed using ψ−1 and φ−1, to give ψ−1 ⊗ φ−1.

ψ−1

φ−1

_ _ _�

�

�

�

�

�

�

�
_ _ _

From reversible to irreversible computations – p.8/35

Reversible Computation.....

• - rotations - A rotation is any element of FxCR1 .

From reversible to irreversible computations – p.9/35

Reversible Computation.....

• - rotations - A rotation is any element of FxCR1 .

• Classically, the only rotation available would be the Not
operation.

i.e. ¬ ∈ FxCR1 with ¬−1 = ¬ .

From reversible to irreversible computations – p.9/35

Reversible Computation.....

• - rotations - A rotation is any element of FxCR1 .

• Classically, the only rotation available would be the Not
operation.

i.e. ¬ ∈ FxCR1 with ¬−1 = ¬ .

• In the quantum case this could be any single qubit rotation.

i.e. any unitary operation in U(2) .

From reversible to irreversible computations – p.9/35

Reversible Computation......

• - conditionals - with the use of a control wire we can introduce a
conditional operation.

From reversible to irreversible computations – p.10/35

Reversible Computation......

• - conditionals - with the use of a control wire we can introduce a
conditional operation.

• given φ ∈ FxCRa we can construct ida | φ ∈ FxCR(N2 ⊗ a).

•

φ

From reversible to irreversible computations – p.10/35

Reversible Computation......

• - conditionals - with the use of a control wire we can introduce a
conditional operation.

• given φ ∈ FxCRa we can construct ida | φ ∈ FxCR(N2 ⊗ a).

•

φ

• the inverse is constructed using φ−1 giving ida | φ−1.

•

φ−1

From reversible to irreversible computations – p.10/35

Conditionals

• We shall also introduce the (opposite) conditional that acts when
the control wire is set to true.

From reversible to irreversible computations – p.11/35

Conditionals

• We shall also introduce the (opposite) conditional that acts when
the control wire is set to true.

• It is constructed from the given conditional, and the Not
operation.

����	
�

φ

≡ Not • Not

φ

From reversible to irreversible computations – p.11/35

Conditionals

• We shall also introduce the (opposite) conditional that acts when
the control wire is set to true.

• It is constructed from the given conditional, and the Not
operation.

����	
�

φ

≡ Not • Not

φ

• given φ ∈ FxCRa we construct φ | ida ∈ FxCR(N2 ⊗ a).

����	
�

φ

From reversible to irreversible computations – p.11/35

Conditionals.

• Using both our conditionals we can introduce a choice operator.

From reversible to irreversible computations – p.12/35

Conditionals.

• Using both our conditionals we can introduce a choice operator.

• given ψ, φ ∈ FxCRa we can construct ψ | φ ∈ FxCR(N2 ⊗ a).

����	
� •

ψ φ

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

From reversible to irreversible computations – p.12/35

Conditionals.

• Using both our conditionals we can introduce a choice operator.

• given ψ, φ ∈ FxCRa we can construct ψ | φ ∈ FxCR(N2 ⊗ a).

����	
� •

ψ φ

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

• the inverse is constructed using ψ−1 and φ−1, ψ−1 | φ−1.

����	
� •

ψ−1 φ−1

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

From reversible to irreversible computations – p.12/35

Conditionals..

• The laws for wires, sequential composition and parallel
composition follow from the categorical infrastructure.

From reversible to irreversible computations – p.13/35

Conditionals..

• The laws for wires, sequential composition and parallel
composition follow from the categorical infrastructure.

• We introduce extra equalities for the conditionals:

From reversible to irreversible computations – p.13/35

Conditionals..

• The laws for wires, sequential composition and parallel
composition follow from the categorical infrastructure.

• We introduce extra equalities for the conditionals:

• For f, g, h ∈ FxCRa we have that that
(f | g) ◦ (N2 ⊗ h) = f ◦ h | g ◦ h.

����	
� •

h f g

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

h f h g

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

From reversible to irreversible computations – p.13/35

Conditionals...

• For f, g, h ∈ FxCRa we have that (N2 ⊗h) ◦ (f | g) = h ◦ f | h ◦ g.

����	
� •

f g h

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f h g h

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

From reversible to irreversible computations – p.14/35

Conditionals...

• For f, g, h ∈ FxCRa we have that (N2 ⊗h) ◦ (f | g) = h ◦ f | h ◦ g.

����	
� •

f g h

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f h g h

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

• For f, f ′, g, g′ ∈ FxCRa that (f | g) ◦ (f ′ | g′) = (f ◦ f ′) | (g ◦ g′).

����	
� • ����	
� •

f ′ g′ f g

_ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f ′ f g′ g

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

From reversible to irreversible computations – p.14/35

Conditionals....

• We also have distributivity over ⊗ and | .

From reversible to irreversible computations – p.15/35

Conditionals....

• We also have distributivity over ⊗ and | .

• Given f, g ∈ FxCRa and h ∈ FxCRb we have that
(f | g) ⊗ h = (f ⊗ h) | (g ⊗ h).

����	
� •

f g

h

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

= ����	
� •

f g

h h

From reversible to irreversible computations – p.15/35

Conditionals....

• We also have distributivity over ⊗ and | .

• Given f, g ∈ FxCRa and h ∈ FxCRb we have that
(f | g) ⊗ h = (f ⊗ h) | (g ⊗ h).

����	
� •

f g

h

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

= ����	
� •

f g

h h

• It has been suggested that we can now simplify the first two to be

that (h | h) = (id1 ⊗ h).

����	
� •

h h

=

h
From reversible to irreversible computations – p.15/35

Conditionals.....

• We also have that ida | ida = idN2⊗a.

•

ida

=

ida

From reversible to irreversible computations – p.16/35

Conditionals.....

• We also have that ida | ida = idN2⊗a.

•

ida

=

ida

• Moreover, we have for f, g ∈ FxCRa that
(¬ ⊗ ida) ◦ (f | g) = (g | f) ◦ (¬ ⊗ ida).

����	
� • Not

f g

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= Not ����	
� •

g f

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

From reversible to irreversible computations – p.16/35

Example FxC
R Categories

• - FCCR - The category of classical reversible circuits.

From reversible to irreversible computations – p.17/35

Example FxC
R Categories

• - FCCR - The category of classical reversible circuits.

• circuits can be interpreted as permutations on [a]

From reversible to irreversible computations – p.17/35

Example FxC
R Categories

• - FCCR - The category of classical reversible circuits.

• circuits can be interpreted as permutations on [a]

• - FQCR - The category of quantum circuits.

From reversible to irreversible computations – p.17/35

Example FxC
R Categories

• - FCCR - The category of classical reversible circuits.

• circuits can be interpreted as permutations on [a]

• - FQCR - The category of quantum circuits.

• circuits can be interpreted as unitary operators on a-dimensional
Hilbert spaces.

From reversible to irreversible computations – p.17/35

Example FxC
R Categories

• - FCCR - The category of classical reversible circuits.

• circuits can be interpreted as permutations on [a]

• - FQCR - The category of quantum circuits.

• circuits can be interpreted as unitary operators on a-dimensional
Hilbert spaces.

• Note that FCCR →֒ FQCR , and preserves extensional equality.

From reversible to irreversible computations – p.17/35

Bipermutative Categories

• A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category

with two symmetric monoidal structures (Z,⊕) and (I,⊗) .

From reversible to irreversible computations – p.18/35

Bipermutative Categories

• A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category

with two symmetric monoidal structures (Z,⊕) and (I,⊗) .

• With distributivity isomorphisms

d ∈ A⊗ (B ⊕ C) ≃ A⊗B ⊕ A⊗ C and

d′ ∈ (A⊕B) ⊗ C) ≃ A⊗ C ⊕B ⊗ C subject to a number of

coherence laws [Lap72].

From reversible to irreversible computations – p.18/35

Bipermutative Categories

• A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category

with two symmetric monoidal structures (Z,⊕) and (I,⊗) .

• With distributivity isomorphisms

d ∈ A⊗ (B ⊕ C) ≃ A⊗B ⊕ A⊗ C and

d′ ∈ (A⊕B) ⊗ C) ≃ A⊗ C ⊕B ⊗ C subject to a number of

coherence laws [Lap72].

• A bipermutative category is a symmetric bimonoidal categeory

where all isomorphisms apart from c⊕ ∈ A⊕B ≃ B ⊕A and

c⊗ ∈ A⊗B ≃ B ⊗A are identities.

From reversible to irreversible computations – p.18/35

Bipermutative Categories

• A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category

with two symmetric monoidal structures (Z,⊕) and (I,⊗) .

• With distributivity isomorphisms

d ∈ A⊗ (B ⊕ C) ≃ A⊗B ⊕ A⊗ C and

d′ ∈ (A⊕B) ⊗ C) ≃ A⊗ C ⊕B ⊗ C subject to a number of

coherence laws [Lap72].

• A bipermutative category is a symmetric bimonoidal categeory

where all isomorphisms apart from c⊕ ∈ A⊕B ≃ B ⊕A and

c⊗ ∈ A⊗B ≃ B ⊗A are identities.

• Our models for FCCR and FQCR give rise to bipermutative
categories, where N2 = I ⊕ I and all the laws stated above hold
in all bipermutative categories.

From reversible to irreversible computations – p.18/35

Bipermutative Categories

• There are still a number of coherence laws to be satisfied such as:

A⊗ (B ⊕ C)

A⊗c⊕

��

= (A⊗B) ⊕ (A⊗ C)

c⊕

��

A⊗ (C ⊕B) = (A⊗ C) ⊕ (A⊗B)

and

A⊗ (B ⊕ C)

c⊗

��

= (A⊗B) ⊕ (A⊗ C)

c⊗⊕c⊗

��

(B ⊕ C) ⊗A = (B ⊗A) ⊕ (C ⊗A)

From reversible to irreversible computations – p.19/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

From reversible to irreversible computations – p.20/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

• We define the category, FxCIr , where every morphism
represents an irreversible computation.

From reversible to irreversible computations – p.20/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

• We define the category, FxCIr , where every morphism
represents an irreversible computation.

• Every morphism ψ′ is of the form, ψ′ = (h, g, ψ)

From reversible to irreversible computations – p.20/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

• We define the category, FxCIr , where every morphism
represents an irreversible computation.

• Every morphism ψ′ is of the form, ψ′ = (h, g, ψ)

• - h - is a set of heap inputs,

From reversible to irreversible computations – p.20/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

• We define the category, FxCIr , where every morphism
represents an irreversible computation.

• Every morphism ψ′ is of the form, ψ′ = (h, g, ψ)

• - h - is a set of heap inputs,

• - g - is a set of garbage outputs,

From reversible to irreversible computations – p.20/35

Irreversible Computation

• We derive a notion of irreversible computations from the given
notion of reversible computation.

• We define the category, FxCIr , where every morphism
represents an irreversible computation.

• Every morphism ψ′ is of the form, ψ′ = (h, g, ψ)

• - h - is a set of heap inputs,

• - g - is a set of garbage outputs,

• - ψ - is the underlying reversible computation.

From reversible to irreversible computations – p.20/35

Irreversible Computation.

• A morphism in FxCIr(a, b) can be given as a morphism in

FxCR((a⊗ h), (b⊗ g)) with the requirement that

(a⊗ h) = (b⊗ g).

a
ψ

b

h
� g�

From reversible to irreversible computations – p.21/35

Irreversible Computation.

• A morphism in FxCIr(a, b) can be given as a morphism in

FxCR((a⊗ h), (b⊗ g)) with the requirement that

(a⊗ h) = (b⊗ g).

a
ψ

b

h
� g�

• For any ψ ∈ FxCRa there is an equivalent circuit

ψ̂ ∈ FxCIr(a, a).

ψ ∈ FxCRa

ψ̂ ∈ FxCIr(a, a)

such that ψ̂ = (0, 0, ψ), i.e. there is no heap or garbage.

From reversible to irreversible computations – p.21/35

Compositionality

• Given α = (hα, gα, φα) ∈ FxCIr(a, b) and

β = (hβ , gβ , φβ) ∈ FxCIr(b, c), we define β ◦ α ∈ FxCIr(a, c), as

a
φα φβ

c

hα
�

88
88 gβ

�

hβ
�

���� gα
�

From reversible to irreversible computations – p.22/35

Compositionality.

• The identity can be obtained by lifting the reversible identity

idFxC
Ir

a = ̂idFxCR

a .

From reversible to irreversible computations – p.23/35

Compositionality.

• The identity can be obtained by lifting the reversible identity

idFxC
Ir

a = ̂idFxCR

a .

• Given α = (hα, gα, φα) ∈ FxCIr(a, b) and

β = (hβ , gβ , φβ) ∈ FxCIr(c, d), we obtain

α⊗ β ∈ FxCIr(a⊗ c, b⊗ d) as

a
φα

b

c
33

33

33
33 d

hα
�

����
φβ

���� gα
�

hβ
� gβ

�

From reversible to irreversible computations – p.23/35

Compositionality.

• The identity can be obtained by lifting the reversible identity

idFxC
Ir

a = ̂idFxCR

a .

• Given α = (hα, gα, φα) ∈ FxCIr(a, b) and

β = (hβ , gβ , φβ) ∈ FxCIr(c, d), we obtain

α⊗ β ∈ FxCIr(a⊗ c, b⊗ d) as

a
φα

b

c
33

33

33
33 d

hα
�

����
φβ

���� gα
�

hβ
� gβ

�

• The neutral element of the tensor, i.e. the empty circuit, can be

obtained by lifting IFxC
Ir

= ÎFxCR

.
From reversible to irreversible computations – p.23/35

Example FxC
Ir Categories

• - FCC - The category of finite classical computations.

From reversible to irreversible computations – p.24/35

Example FxC
Ir Categories

• - FCC - The category of finite classical computations.

• Morphisms are interpreted as as functions on finite sets:

(h, g, φ) ∈ FCC(a, b) is interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a] → [b]

, where JφK ∈ [a⊗ h] → [b⊗ g] is the associated permutation,

(0h,−) ∈ [a] → [a⊗ h] initialises the heap and πg ∈ [b⊗ g] → b

projects out the garbage.

From reversible to irreversible computations – p.24/35

Example FxC
Ir Categories

• - FCC - The category of finite classical computations.

• Morphisms are interpreted as as functions on finite sets:

(h, g, φ) ∈ FCC(a, b) is interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a] → [b]

, where JφK ∈ [a⊗ h] → [b⊗ g] is the associated permutation,

(0h,−) ∈ [a] → [a⊗ h] initialises the heap and πg ∈ [b⊗ g] → b

projects out the garbage.

• - FQC - The category of finite quantum computations.

From reversible to irreversible computations – p.24/35

Example FxC
Ir Categories

• - FCC - The category of finite classical computations.

• Morphisms are interpreted as as functions on finite sets:

(h, g, φ) ∈ FCC(a, b) is interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a] → [b]

, where JφK ∈ [a⊗ h] → [b⊗ g] is the associated permutation,

(0h,−) ∈ [a] → [a⊗ h] initialises the heap and πg ∈ [b⊗ g] → b

projects out the garbage.

• - FQC - The category of finite quantum computations.

• Morphisms are interpreted as superoperators:

(h, g, φ) ∈ FQC(a, b) is interpreted as

trg ◦ JφK ◦ 0h ⊗− ∈ Super(a, b) , where JφK ∈ Super(h⊗ a, g⊗ b)

is the superoperator associated to the unitary operator given by

interpreting the reversible circuit φ . 0h ⊗− ∈ Super(a, a⊗ h)
initialises the heap and trg ∈ Super(g ⊗ b, b) is a partial trace

which traces out the garbage.

From reversible to irreversible computations – p.24/35

Equivalence

• In the reversible case, the equality of definable circuits is the
same for both classical and quantum circuits.

From reversible to irreversible computations – p.25/35

Equivalence

• In the reversible case, the equality of definable circuits is the
same for both classical and quantum circuits.

• However, this doesn’t hold when we move onto irreversible
circuits.

From reversible to irreversible computations – p.25/35

Equivalence

• In the reversible case, the equality of definable circuits is the
same for both classical and quantum circuits.

• However, this doesn’t hold when we move onto irreversible
circuits.

• For example, the following equivalence holds in FCC but not in
FQC.

•
�

Not
�

≡

From reversible to irreversible computations – p.25/35

Equivalence.

• A similar equivalence that holds in FQC can be given as

• •
�

Not
�

�
Not

�

≡ •
�

Not
�

akin to von Neumann’s measurement postulate.

From reversible to irreversible computations – p.26/35

Equivalence.

• A similar equivalence that holds in FQC can be given as

• •
�

Not
�

�
Not

�

≡ •
�

Not
�

akin to von Neumann’s measurement postulate.

• How can we characterise the equivalences which should always
hold?

From reversible to irreversible computations – p.26/35

The Three Laws - 1

• - Garbage Collection - If a circuit can be reduced into two smaller
circuits such that one part of the circuit only acts on heap inputs
and on garbage outputs, then that part of the circuit can be
removed.

A f B

H
� g G

�

_ _�
�
�
�

�
�
�
�

_ _

≡ A f B

From reversible to irreversible computations – p.27/35

The Three Laws - 2

• - Uselessness of garbage processing - If a circuit can be reduced
into two smaller circuits such that one part of the circuit only has
an effect on garbage outputs, then that part can be removed.

A
f

B

H
� g G

�

≡ A
f

B

H
�

G
�

From reversible to irreversible computations – p.28/35

The Three Laws - 2

• - Uselessness of garbage processing - If a circuit can be reduced
into two smaller circuits such that one part of the circuit only has
an effect on garbage outputs, then that part can be removed.

A
f

B

H
� g G

�

≡ A
f

B

H
�

G
�

• or alternately

g � ≡ �

From reversible to irreversible computations – p.28/35

The Three Laws - 2

• - Uselessness of garbage processing - If a circuit can be reduced
into two smaller circuits such that one part of the circuit only has
an effect on garbage outputs, then that part can be removed.

A
f

B

H
� g G

�

≡ A
f

B

H
�

G
�

• or alternately

g � ≡ �

• we can now simplify the first law to state that a wire that simply
connects the heap to the garbage is equivalent to having nothing.

� � ≡ •
From reversible to irreversible computations – p.28/35

The Three Laws - 3

• - Uselessness of heap preprocessing - If a circuit can be reduced
into two smaller circuits such that one part of the circuit only has
effect on heap inputs, and the effect on the zero vector is the
identity, then that part can be removed.

if h~0 = ~0 then

A
f

B

H
�

h G
�

≡ A
f

B

H
�

G
�

From reversible to irreversible computations – p.29/35

The Three Laws - 3

• - Uselessness of heap preprocessing - If a circuit can be reduced
into two smaller circuits such that one part of the circuit only has
effect on heap inputs, and the effect on the zero vector is the
identity, then that part can be removed.

if h~0 = ~0 then

A
f

B

H
�

h G
�

≡ A
f

B

H
�

G
�

• or alternately

if h~0 = ~0 then

�
h ≡ �

From reversible to irreversible computations – p.29/35

Using the Three Laws

• We can already use these laws to give a proof of the measurement
postulate.

From reversible to irreversible computations – p.30/35

Using the Three Laws

• We can already use these laws to give a proof of the measurement
postulate.

• The first step is to show the equivalence of

• •

Not

Not

≡ •

• Not •

Not Not

From reversible to irreversible computations – p.30/35

Using the Three Laws

• We can already use these laws to give a proof of the measurement
postulate.

• The first step is to show the equivalence of

• •

Not

Not

≡ •

• Not •

Not Not

• Both are in FQCR, and actually only use elements of FCCR.

From reversible to irreversible computations – p.30/35

Using the Three Laws.

• The third controlled not is eliminated using the second law:

•
� • Not • �

�
Not Not

�

_ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _

_ _ _�

�

�

�

�

�
_ _ _

≡ •
� • Not

�

�
Not

�

From reversible to irreversible computations – p.31/35

Using the Three Laws..

• The controlled Not operations preserve the zero vector, so we can
eliminate the first one using the third law:

•
� • Not

�

�
Not

�

_ _ _�
�
�

�
�
�

_ _ _

_ _ _�

�

�

�

�

�
_ _ _

≡ •
�

Not
�

� �

From reversible to irreversible computations – p.32/35

Using the Three Laws...

• Finally the bottom wire can be removed by use of the first law:

•
�

Not
�

� �

_ _ _�

�

�

�

�

�
_ _ __ _ _ _ _�� ��

_ _ _ _ _

≡ •
�

Not
�

From reversible to irreversible computations – p.33/35

Conclusions & Further Work

• Are there equalities between definable irreversible quantum
circuits which are not derivable from our laws?

From reversible to irreversible computations – p.34/35

Conclusions & Further Work

• Are there equalities between definable irreversible quantum
circuits which are not derivable from our laws?

• It has been proposed that this question may be answered by
translating our formalism into Selinger’s dagger-complete
categories [Sel05].

From reversible to irreversible computations – p.34/35

Conclusions & Further Work

• Are there equalities between definable irreversible quantum
circuits which are not derivable from our laws?

• It has been proposed that this question may be answered by
translating our formalism into Selinger’s dagger-complete
categories [Sel05].

• We are investigating whether we could state the whole
development more abstractly using only symmetric, strictly
bimonoidal, categories.

From reversible to irreversible computations – p.34/35

Conclusions & Further Work

• Are there equalities between definable irreversible quantum
circuits which are not derivable from our laws?

• It has been proposed that this question may be answered by
translating our formalism into Selinger’s dagger-complete
categories [Sel05].

• We are investigating whether we could state the whole
development more abstractly using only symmetric, strictly
bimonoidal, categories.

• It is not clear how to state abstractly the precondition required by

the third law; that a circuit is ~0-preserving.

From reversible to irreversible computations – p.34/35

Conclusions & Further Work

• Are there equalities between definable irreversible quantum
circuits which are not derivable from our laws?

• It has been proposed that this question may be answered by
translating our formalism into Selinger’s dagger-complete
categories [Sel05].

• We are investigating whether we could state the whole
development more abstractly using only symmetric, strictly
bimonoidal, categories.

• It is not clear how to state abstractly the precondition required by

the third law; that a circuit is ~0-preserving.

• ...

From reversible to irreversible computations – p.34/35

Thankyou

For more info see:
http://sneezy.cs.nott.ac.uk/QML

References
[AG05] Thorsten Altenkirch and Jonathan Grattage. A functional quantum

programming language. In 20th Annual IEEE Symposium on Logic in Computer

Science, 2005.

[Lap72] M. Laplaza. Coherence for distributivity. Lecture Notes in Mathematics,

281:29–72, 1972.

[Sel05] Peter Selinger. Dagger compact closed categories and completely positive maps.

In Peter Selinger, editor, Proceedings of the 3rd International Workshop on

Quantum Programming Languages, Electronic Notes in Theoretical Computer

Science. Elsevier Science, 2005.

From reversible to irreversible computations – p.35/35

	Structure of Talk
	Introduction
	Reversible Computation
	Reversible Computation.
	Reversible Computation..
	Reversible Computation...
	Reversible Computation....
	Reversible Computation.....
	Reversible Computation......
	Conditionals
	Conditionals.
	Conditionals..
	Conditionals...
	Conditionals....
	Conditionals.....
	Example $FCR $ Categories
	Bipermutative Categories
	Bipermutative Categories
	Irreversible Computation
	Irreversible Computation.
	Compositionality
	Compositionality.
	Example $FCir $ Categories
	Equivalence
	Equivalence.
	The Three Laws - 1
	The Three Laws - 2
	The Three Laws - 3
	Using the Three Laws
	Using the Three Laws.
	Using the Three Laws..
	Using the Three Laws...
	Conclusions & Further Work
	Thankyou

