
First year report

Alexander S. Green

asg@cs.nott.ac.uk

December 2006

Abstract

If a function is logically reversible then it is possible to build a re-
versible circuit that performs the function. We will see later that it is also
possible to build reversible circuits from functions that are irreversible.
The process involves adding extra “heap” inputs, and extra “garbage”
outputs. Reversible circuits are an interesting and important area of mod-
ern computer science. Not only do reversible circuits remove the limits on
energy efficiency, but they are also a good starting point to learn about
Quantum circuits, and more generally Quantum computation.

Computers as they currently operate, are highly inefficient. Processors
are full of transitors which all produce heat. This heat is in effect lost to
the surroundings as waste. As more and more transistors are squeezed
onto smaller and smaller circuits this problem is only going to get worse.
What’s worse than this is the fact that even if computers can be made
more efficient there is still a lower limit on the amount of energy that will
be produced.

Irreversible operations lose information, and it can been shown that
this loss of information directly leads to the limit mentioned above. In fact
the limit can be given as kT ln2 joules per bit of lost information (Where k
is Boltzmann’s constant, and T is the temperature of the system).[Lan00]

Reversible circuits can overcome this limit, as by definition they can
not lose any information. Simply put, every reversible circuit composed
with it’s inverse, is equivalent to the identity function acting on all the
inputs. It’s quite easy then to see that at any point in a reversible compu-
tation you must have an equivalent amount of information as you started
with.

There are however many irreversible functions that are commonly used
in computers. A good example is that of the “Nand” gate which is a very
common example of a universal constructor, meaning that any possible
computation can be implemented using only “Nand” gates. It’s easy to

1

see that the “Nand” function is irreversible just from it’s truth table.

0 0 1
0 1 1
1 0 1
1 1 0

If the output bit is a 1, how do you know what the two input bits were?
For us though, what’s more interesting is that Quantum circuits are

a generalisation of reversible circuits. The reversible circuits are in fact
a subset of quantum circuits, and even quantum bits or “qubits” can
be thought of as a generalisation of classical bits. This report aims to
give a detailed introduction to quantum circuits, building on what we
know about reversible circuits, and introducing our concepts of heap and
garbage to give us a universal set of quantum circuits. This report shall
also introduce the current work we are doing on the subject.

Contents

1 Reversible Circuits 3

2 Qubits 4

3 More than one Qubit 5

4 A Couple of Quantum Algorithms 6

4.1 Shor’s Algorithm . 6
4.2 Grover’s Algorithm . 7

5 Quantum Circuits 7

5.1 Hilbert Spaces . 8

6 Classical and Quantum Eqivalence 9

7 Classical Heap and Garbage 9

8 Quantum Heap and Garbage 10

9 Reversible Computation 11

9.1 Examples of FxC' categories . 14
9.2 Bipermutative categories . 14

10 Irreversible computations 15

10.1 Examples of FxC categories . 15

11 Equivalence 16

2

12 Further work 18

12.1 Dagger Categories . 18
12.2 The Measurement Calculus . 18
12.3 The Quantum IO Monad . 19

1 Reversible Circuits

Reversible circuits can be thought of as isomorphisms between vectors (of equal
length) of booleans. The booleans are a simple way of thinking of bits, with 0
as False, and 1 as True. You can see that for vectors of length n there must
be 2n! of these isomorphisms. For vectors of length one, this gives the expected
number of two possible isomorphisms. Either [True] → [True] (and hence
[False] → [False]) or [True] → [False] (and hence [False] → [True]). For
vectors of length two, we already have 24 possible isomorphisms, so it would be
useful to have some constructors we can use to build up reversible circuits.

There are five constructors that are used for this purpose, which are the
Not gate, wire permutations, sequential composition, parallel composition, and
finally the conditional.

The Not gate is simply the second of the two 1 bit isomoprhisms given above,
and can be denoted:

x0 Not ¬x0

wire permutations can simply be thought of as moving bits about within the
vectors. They are denoted as in the following examples:

x0 EE
E x1

x1
yyy x0

x0 EE
E x1

x1
yyy x0

x2 x2

x0 EE
E x1

x1
yyy

EE
E x2

x2
yyy x0

sequential composition is simply the joining (in sequence) of two reversible cir-
cuits with the same arity:

Circ1 Circ2

parallel composition is the joining (in parallel) of two reversible circuits. It can
be thought of as the tensor product of the two:

Circ1

Circ2

_ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _

the conditional has one wire as a control, and depending on the value of the
control it will perform one of it’s two argument circuits:

• ����	
�

Circ1 Circ2

3

The identity function can be thought of as a wire permutation in which none of
the wires actually swap places.

2 Qubits

What we have presented so far has been pretty straight-forward. The step from
the classical realm into the quantum realm is a little more complicated. We’ve
heard of the notion of a qubit, but what exactly is one.

Without wanting to go into too much detail about quantum mechanics it
is nice to mention Thomas Young’s double-slit experiment. Whereby light is
shone through two slits towards a screen, and much to everyone’s amazement a
wave interference pattern appears on the screen:

What’s interesting about this experiment is that light comes in discrete sized
pieces known as photons. It is possible to repeat the above experiment with a
light source that only emits one photon at a time. The same wave interference
pattern is produced, and thus it is believed that each photon must pass through
both slits simultaneously, and interfere with itself to produce the pattern. This
behaviour whereby something can be in more than one state at the same time
leads to the power behind quantum computation.

Another interesting extension to this experiment is to set up the apparatus
as before, with a light source that produces a single photon at a time. This time
adding detectors to each (or either) of the slits, that can detect when a photon
passes through them. Now when you start the experiment you know which slit
the photon goes through, but when you look at the screen there is no longer
the wave interference pattern. This is similar to the concept of decoherence in
quantum computers. A subject that will be discussed later.

A couple of very interesting books by Richard P. Feynman go into much
more detail. [Fey94] [Fey71]

4

So, back onto the subject of qubits. What exactly is a qubit? Well, a qubit
is a unit of quantum information. It has two base states (|0〉 and |1〉) that
correspond very well to the states of a classical bit. However what makes the
qubit special is that it can be put into a “super-position” of these two base
states. In a very similar manner to the photon of light having to pass through
both slits simultaneously. This means that the current value of a qubit (|ψ〉)
can be thought of as a linear combination of the two base states.

|ψ〉 = α |0〉+ β |1〉

with α and β as the complex amplitudes (ie. in C) of |0〉 and |1〉 respectively,
and the constraint that

α2 + β2 = 1

There is however one draw back! When a qubit is measured it will only ever be
in one of the base states. In effect, measuring the qubit collapses the superposi-
tion. It’s a very similar concept as the extension to the double slit experiment
mentioned above where adding a measurement device (the detector) causes the
photon only to have travelled through one of the slits.

Luckily for us the base state that the qubit collapses into upon measurment
is completely probablistic. The probablity that the qubit collapses into state
|0〉 is simply α2, and the probability that the qubit collapses into state |1〉 is
correspondingly β2. For example, the following qubit

|ψ〉 =
1√
2
|0〉+ 1√

2
|1〉

is in an equal super-position of both the base states, and hence when measured
there is an equal probability (of 1

2) that the qubit will collapse into |0〉 or |1〉.
This ability of qubits to be in more than one state at a time leads to the power
of quantum computers. If a computation is run on a qubit in a superposition
then in effect the computation has been run over both base states in parallel.
We’ll see shortly that as you add each new qubit you in essence double the
number of base states available, and hence double the number of computations
that are performed in parallel.

3 More than one Qubit

Now we know what a qubit is we can look into what happens when we have
multiple qubits.

When you have more than one qubit it is possible for their states to become
“entangled”. We’ll see what this means shortly, but first we’ll quickly mention
un-entangled multiple qubit states. These states are pretty much what you’d
expect to get if you had more than one qubit. Each one acts individually (much
like bits in classical circuits). The state of the system is simply the tensor
product of the individual states of each qubit. These unentangled states are
really not very interesting or useful, mainly because systems of unentangled

5

states can be simulated efficiently on classical computers. It is the entangled
states that give us “quantum parallelism” and hence are of interest because
they cannot be efficiently simulated on classical computers, and can therefore be
used to create algorithms for quantum computers that are much more efficient
than their classical counterparts. (We’ll look at a few examples of quantum
algorithms later)

Entangled states arise when qubits “depend” upon one another. Any multi-
ple qubit state that cannot be simply thought of as the tensor product of each of
the individual qubits, is said to be in an entangled state. Entangled states can
be thought of as a linear superposition of all the possible “bit-string” base states
of the qubits. For example a two qubit entangled state is a linear superposition
of |00〉,|01〉,|10〉, and |11〉. That is:

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

again with α,β,γ, and δ as the complex amplitudes, and the condition:

α2 + β2 + γ2 + δ2 = 1

and by the time you even have 3 entangled qubits there are already 8 possi-
ble base states. (|000〉,|001〉,|010〉,|011〉,|100〉,|101〉,|110〉, and |111〉) In fact the
number of base states for an n qubit system is 2n, which clearly shows an ex-
pontential growth in computational bases, for a linear growth in the number of
qubits.

This gives us, for an n qubit system, the ability to put the “register” of qubits
into an equal superposition of 2n states, which means that if a computation is
run over the qubits in the register, it in essence is run over each of the 2n states
in parallel. This is what is known as quantum parallelism, and isn’t quite the
same as classical parallelism as when you measure the register it will collapse
into only one of the base states. The trick behind creating quantum algorithms
is to make it such that the end state of the system is such that the probability
of the measurment to be the “correct” answer is (arbitraily) high.

4 A Couple of Quantum Algorithms

The two most famous algorithms that effectively use quantum parallelism are
Shor’s factorisation algorithm [Sho94], and Grover’s database search algorithm
[Gro97].

4.1 Shor’s Algorithm

Shor’s algorithm is sometimes referred to as the quantum computer’s killer-app.
It is an algorithm for factoring large numbers, and has a time complexity of only
©((logN)3) for any number N. In comparison, the fastest known solution to the
factoring problem on classical computers has exponential time complexity, and
hence forms the basis of the RSA public key encryption system. Peter Shor’s

6

discovery of this algorithm in 1994 lead to a massive resurgence of interest in
quantum computing, not least because he had shown that given a sufficiently
sized quantum computer it would be possible to break the RSA cryptographic
standard.

The quantum part of the algorithm is in fact a solution to the order-finding
problem, which it had previously been shown that the factoring problem could
be reduced to efficiently on a classical computer. Order-finding is used to find
the period of a function, and Shor’s algorithm shows how this can be achieved
using the inverse quantum Fourier transform.

The algorithm computes the period of a function f, by first evaluating the
function at every point, which on a quantum computer can all be done simulta-
neously by running the function over a super-position of all points. The clever
part of the algorithm lies in the way that the quantum Fourier transform is then
used to convert the resulting super-position into a state that will collapse into
the correct solution with high probability.

4.2 Grover’s Algorithm

Grover’s algorithm is another influential algorithm in the area of quantum com-
puting, as it too shows a speed up when compared to the best classical solution.
It is an algorithm for searching in an unsorted database, and has a time com-
plexity of ©(N

1

2) for a database of size N. Classically, the linear search is the
best solution and has a time complexity of©(N). Although the speed up gained
by this algorithm is in no way as impressive as the exponential speed up found
by Shor, it was an important discovery, as because unlike Shor’s algorithm, it
is provably faster than any possible classical solution, rather than just the best
known solution.

5 Quantum Circuits

Now we know a little about qubits, we can look at the quantum circuits that
we use them in. As mentioned before they are an extension on the reversible
circuits we have already seen. Apart from having to now think of the circuits
as isomorphisms between qubit register states, we only need to add one other
constructor, the Rotation gate.

Rotu

The rotation gate takes as it’s argument, u, a unitary matrix representing the ro-
tation. A couple of examples are the Quantum Not rotation, and the Hadamard
operation.

Not =

(
0 1
1 0

)
Hadamard =

1√
2

(
1 1
1 −1

)

where the quantum Not is a rotation of 180o, and the hadamard is a rotation of
90o. The hadamard opertation takes either of the base states of a single qubit
into an equal superposition of both states.

7

The gate is called a rotation gate because the complex amplitudes in the lin-
ear superposition for a single qubit lend themselves nicely to picturing the state
of the qubit as a single point on the surface of a unit sphere. This interpretation
is commonly known as the “bloch sphere”:

a rotation gate can be thought of as literally a rotation of that point about the
sphere.

The fact that a rotation is given as a unitary matrix is pretty interesting,
and in fact every quantum circuit can be described as a unitary matrix. The
dimension of the matrix required to represent an n qubit operation is 2n × 2n,
which again shows why a quantum computation can’t be “efficiently” simulated
on a classical computer.

5.1 Hilbert Spaces

Hilbert Spaces are a notion that is very useful for interpreting the unitary op-
erations found in quantum computations. A Hilbert space is formally a vector
space over either the Reals or Complex numbers, along with a function known
as the inner product. We shall be using Hilbert spaces defined over the Complex
numbers. A vector space is simply an abelian group along with scalar multipli-
cation, meaning that there is a commutative addition operation, along with a
null element refered to as zero, and the scalar multiplication function along with
an identity element referred to as 1. For a Hilbert space H , scalar multiplication
satisfies the following axioms: (where x, y, z ∈ H and λ, µ, 1 ∈ C)
λ(x+ y) = λx+ λy
(λ+ µ)x = λx + µx
(λµ)x = λ(µx)
1x = x
The inner product (denoted (x, y)) also satisfies the following axioms:
(x, x) = 0⇔ x = 0
(x, x) > 0
(x+ y, z) = (x, z) + (y, z)
(λx, y) = λ(x, y)
(x, y) = (y, x)

8

The inner product can be thought of as adding a geometric concept, as it can be
used to introduce the magnitudes of vectors, denoted ‖ x ‖=

√
(x, x). Also we

can then introduce the concept of angles between vectors, where cosθ = (x,y)
‖x‖‖y‖ .

If two vectors in a Hilbert space have an inner product of zero then they are said
to be orthogonal. The set of all normalised (e.g. of unit magnitude) orthogonal
vectors in a Hilbert space is said to form an orthonormal basis of the Hilbert
space. These geometric concepts make it easy to model many concepts central
to quantum computation, such as a change of basis, or a projection.

6 Classical and Quantum Eqivalence

Classically it is sufficient to show that two circuits are equivalent by giving their
common truth table. In the quantum realm one must show that both circuits
are represented by the same unitary matrix. However as we saw before, the size
of the matrix representing a quantum circuit is 2n × 2n for a circuit with arity
n. We also saw before that the classical circuits are a subset of the quantum
circuits so a very useful thing to point out here is that if two quantum circuits
are made only from elements in the classical subset of the constructors then it is
sufficient to show that they are equivalent by showing that they are classically
equivalent (In other words by giving the truth tables).

This holds because the unitary matrices that represent all of the quantum
circuits that can be built from the classical constructors will only ever contain
zeros and ones.

7 Classical Heap and Garbage

It has been previously mentioned that thinking about the classical reversible cir-
cuits is useful as ground work before extending the ideas into quantum circuits.
So we shall first present here what we mean by heap and garbage in the realm
of classical reversible circuits. We also previously saw that not all functions are
logically reversible, but we need to be able to compute any arbitrary function for
our circuits to be universal. A very similar example of a non-reversible function
to the Nand gate we saw earlier, is the And gate. The truth table is again very
useful to show this.

0 0 0
0 1 0
1 0 0
1 1 1

this time, if the result is a zero we are unable to deduce the inputs.
How is it possible to create a circuit that performs the And function, but is

reversible? Well, look at the following reversible circuit:

•
•
Not

9

with it’s truth table:
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Do you notice any connection between the first two inputs and the third output
in the case when the third input is 0?

The circuit given above is known as the Toffoli gate, [Tof80], when the third
input is set to zero, then the third output is always the And of the first two
inputs.

So, now we can define our Heap and Garbage. The Heap shall be any extra
inputs that are required for a reversible computation. They shall always have
the value of ~0. The Garbage shall be any extra outputs that are required fo a
reversible computation, their values are obviously determined by the computa-
tion itself. In the And example just given, the Heap is just the third input, and
the Garbage is both of the first and second outputs. The reversible And circuit
with Heap and Garbage would be drawn:

x0 • Garbage
�

x1 • Garbage�

Heap �
Not x0 And x1

it’s important to note that when thinking of this as a reversible circuit that the
contents of the Heap and Garbage are required, however when thinking of this
as the And function the Heap and Garbage can be ignored.

8 Quantum Heap and Garbage

So, now what about making our quantum circuits with Heap and Garbage, as in
the above classical example. Well it looks quite straight forward, we can simply
as before introduce the notions of Heap and Garbage, with the Heap being
any extra inputs we require, and the Garbage being any extra outputs that are
produced. For the heap it’s simply a question of redefining it such that all the

heap qubits have the input value of ~|0〉. But now we need to think more carefully
about the garbage. We previously mentioned that when thinking of the circuits
as performing a function that we can simply ignore the garbage outputs, however
in the case of quantum circuits what happens if some of the useful outputs are
entangled with the garbage? Obviously this could cause problems, for example
if the garbage was to be measured it would cause the useful outputs to decohere.
We obviously need something to control this behaviour, or at least work with
it. In the next few sections i shall introduce the work we’ve been doing on this

10

subject, looking at the problem from a categorical viewpoint, as introduced in
our paper [GA06].

9 Reversible Computation

We model reversible computations by a groupoid FxC', that is for every mor-
phism ψ ∈ FxC'(a, b) there is an inverse ψ−1 ∈ FxC'(b, a) such that ψ, ψ−1

are an isomorphism. We assume that the groupoid is strict, i.e. that any iso-
morphic objects are equal. This entails that FxC'(a, b) is empty, if a 6= b,
consequently we denote homsets by FxC' a = FxC'(a, a). We also assume
that FxC' has a strict monoidal structure I,⊗ which corresponds to parallel
composition of computations and a special object of Booleans,denoted by N2.
Since we are only interested in objects which can be generated from I,N2,⊗ we
can use natural numbers a ∈ N to denote the object 2a. Hence we have that
I = 0, N2 = 1 and a⊗ b = a+ b. We write [a] = {i ∈ N | i < a} for the initial
segment of N.

We characterise the morphisms, i.e. circuits, in FxC'a inductively and also
give the inverses:

wires Given a bijection on initial segments φ : [a] ' [a] we write wiresφ ∈
FxC' a for the associated rewiring. For example, the rewiring denoted
pictorially as

x0 ??
? x1

x1

���
??

? x2
x2

��� x0

would have φ(0) = 2, φ(1) = 0, and φ(2) = 1. The existence of wires
follows from the strict monoidal structure, with the identity (ida) being a
special case of wires.

sequential composition combines two circuits of equal size (ie. with the same
number of wires) in sequence. That is, given ψ, φ ∈ FxC'a we construct
φ ◦ ψ ∈ FxC'a.

ψ φ

_ _ _ _�

�

�

�
_ _ _ _

we can construct the inverse using φ−1 and ψ−1 to give ψ−1 ◦ φ−1.

φ−1 ψ−1

_ _ _ _ _ _�

�

�

�
_ _ _ _ _ _

parallel composition combines any two circuits in parallel, and can be thought
of as the tensor product. The size of the new circuit constructed is equal to
the sum of the sizes of the original two circuits. That is, given ψ ∈ FxC'a
and φ ∈ FxC'b we can construct ψ ⊗ φ ∈ FxC'(a⊗ b).

ψ

φ

_ _�

�

�

�

�

�

�

�
_ _

11

again we can construct the inverse using ψ−1 and φ−1, this time to give
ψ−1 ⊗ φ−1.

ψ−1

φ−1

_ _ _�

�

�

�

�

�

�

�
_ _ _

rotations count as any 1 “bit” operations. That is a rotation is any element
of FxC'1, and in the case of classical reversible circuits the only rotation
available is the Not operation. So we have ¬ ∈ FxC'1 with ¬−1 = ¬. In
the quantum case this would be any single qubit rotation.(i.e. a unitary
operation in U(2))

conditionals use a control wire to decide whether a computation should be
performed. That is, given φ ∈ FxC'a we can construct ida | φ ∈
FxC'(N2 ⊗ a).

•
φ

the inverse is again constructed using φ−1 giving ida | φ−1.

•

φ−1

For ease of notation we shall also introduce the conditional that acts when
the control wire is set to true. This conditional can be constructed from the
conditional already given, and the Not operation (or rotation) as follows:

����	
�

φ

≡ Not • Not

φ

which for φ ∈ FxC'a can be denoted φ | ida ∈ FxC'(N2 ⊗ a). This
naturally leads us to a choice operator, such that given two computations
of the same size, the value of the control wire is used to govern which
computation is done. That is, given ψ, φ ∈ FxC'a we can construct
ψ | φ ∈ FxC'(N2 ⊗ a), as follow:

����	
� •

ψ φ

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

the inverse is once again given by ψ−1 and φ−1, and constructed as ψ−1 |
φ−1:

����	
� •

ψ−1 φ−1

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

12

The laws governing wires, sequential composition and parallel composition
follow from the categorical infrastructure. Additionally, we assume that the
following equalities hold for conditionals:

Firstly, we have for f, g, h ∈ FxC'a that (f | g) ◦ (N2 ⊗ h) = f ◦ h | g ◦ h
pictorially this can be shown as:

����	
� •

h f g

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

h f h g

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

Secondly, we have for f, g, h ∈ FxC'a that (N2 ⊗ h) ◦ (f | g) = h ◦ f | h ◦ g
pictorially this can be shown as:

����	
� •

f g h

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f h g h

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

and thirdly, we have that for f, f ′, g, g′ ∈ FxC'a that (f | g) ◦ (f ′ | g′) =
(f ◦ f ′) | (g ◦ g′) again the pictorial representation for this would be:

����	
� • ����	
� •

f ′ g′ f g

_ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f ′ f g′ g

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

We also have distributivity over ⊗ and |, such that given f, g ∈ FxC'a and
h ∈ FxC'b we have that (f | g) ⊗ h = (f ⊗ h) | (g ⊗ h). This can again be
given pictorially.

����	
� •

f g

h

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

= ����	
� •

f g

h h

using this last axiom it is possible to simplify the first two to just be that
(h | h) = (id1 ⊗ h) or pictorially:

����	
� •

h h

=

h

The next axiom that we introduce is that ida | ida = idN2⊗a, and can be
given (in it’s most simple form) pictorially as:

•
ida

=

ida

13

Moreover, we have for f, g ∈ FxC'a that (¬⊗ ida) ◦ (f | g) = (g | f) ◦ (¬⊗
ida), or pictorially that would be:

����	
� • Not

f g

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= Not ����	
� •

g f

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

9.1 Examples of FxC' categories

There are two obvious computational examples of FxC' categories: firstly there
is the FCC' category of classical reversible circuits, and secondly there is the
FQC' of quantum circuits. The difference mainly being in the rotations that
are available. The extensional equality is given by interpreting circuits as per-
mutations on [a] in the classical case and as unitary operators on a-dimensional
Hilbert spaces in the quantum case. Note that FCC' ↪→ FQC' and this
embedding preserves extensional equality, because the unitary operators which
can be obtained from definable circuits contain only 0 and 1 and hence can be
obtained by embedding the corresponding permutation.

9.2 Bipermutative categories

A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category with two sym-
metric monoidal structures (Z,⊕) and (I,⊗) and distributivity isomorphisms
d ∈ A⊗(B⊕C) ' A⊗B⊕A⊗C and d′ ∈ (A⊕B)⊗C) ' A⊗C⊕B⊗C subject to
a number of coherence laws [Lap72]. A bipermutative category is a symmetric
bimonoidal categeory where all isomorphisms apart from c⊕ ∈ A⊕B ' B ⊕ A
and c⊗ ∈ A ⊗B ' B ⊗ A are identities. There are still a number of coherence
laws to be satisfied such as:

A⊗ (B ⊕ C)

A⊗c⊕

��

= (A⊗B)⊕ (A⊗ C)

c⊕

��

A⊗ (C ⊕B) = (A⊗ C)⊕ (A⊗B)

and
A⊗ (B ⊕ C)

c⊗

��

= (A⊗B)⊕ (A⊗ C)

c⊗⊕c⊗

��

(B ⊕ C)⊗A = (B ⊗A)⊕ (C ⊗A)

Our models for FCC' and FQC' give rise to bipermutative categories,
where N2 = I ⊕ I and all the laws stated above hold in all bipermutative
categories. Hence, our development could be stated more abstractly in terms of
bipermutative categories.

14

10 Irreversible computations

We derive a notion of irreversible computations from the given notion of re-
versible computation by defining the category FxC, where every morphism of
the category represents an irreversible computation, but is in fact of the form
ψ′ = (h, g, ψ) where h is a set of heap inputs, g is a set of garbage outputs,
and ψ is the underlying reversible computation. So a morphism in FxC(a, b)
can be given as a morphism in FxC'((a ⊗ h), (b ⊗ g)) with the requirement
that (a ⊗ h) = (b ⊗ g). Pictorially we can represent an irreversible computa-
tion (h, g, ψ) as the reversible computation ψ where we mark heap and garbage
explicitly:

a
ψ

b

h
� g�

We also have that for any ψ ∈ FxC'a there is an equivalent circuit ψ̂ ∈
FxC(a, a). More precisely this is given by the predicate:

ψ ∈ FxC'a

ψ̂ ∈ FxC(a, a)

such that ψ̂ = (0, 0, ψ), i.e. there is no heap or garbage.
We note that we can define sequential composition for irreversible computa-

tions: given α = (hα, gα, φα) ∈ FxC(a, b) and β = (hβ , gβ, φβ) ∈ FxC(b, c) we
define β ◦ α ∈ FxC(a, c), as

a
φα φβ

c

hα
�

88
88 gβ

�

hβ
�

���� gα
�

The identity can be obtained by lifting the reversible identity idFxC
a =

̂idFxC'

a . It is straightforward to verify that FxC thus constructed is a cate-
gory by using the monoidal identities in the underlying category of reversible
computations. Moreover, FxC inherits the monoidal structure from FxC', e.g.
given α = (hα, gα, φα) ∈ FxC(a, b) and β = (hβ , gβ , φβ) ∈ FxC(c, d), we obtain
α⊗ β ∈ FxC(a⊗ c, b⊗ d) as:

a
φα

b

c
33

33

33
33 d

hα
�

����
φβ

���� gα
�

hβ
� gβ

�

The neutral element of the tensor, i.e. the empty circuit, can be obtained by

lifting IFxC = ÎFxC'
.

10.1 Examples of FxC categories

We can now extend our two example FxC' categories to FxC categories.
We shall call these FCC for the category of finite classical computations, and

15

FQC for finite quantum computations. The extensional equality in the classical
case is given by interpreting morphisms as functions on finite sets: (h, g, φ) ∈
FCC(a, b) is interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a]→ [b], where JφK ∈ [a⊗ h]→
[b⊗ g] is the associated permutation, (0h,−) ∈ [a]→ [a⊗ h] initialises the heap
and πg ∈ [b⊗ g]→ b projects out the garbage.

In the quantum case we interpret circuits as superoperators (e.g. see [Sel04],
or [VAS06] for an implementation in Haskell). Superoperators are morphisms
on density operators, which are positive operators on the a-dimensional Hilbert
space. A superoperator f ∈ Super(a, b) is a linear function mapping density
operators on a to density operators on b, which preserve the trace and are stable
under ⊗. Analogously to the classical case, we interpret (h, g, φ) ∈ FQC(a, b)
as trg ◦ JφK◦0h⊗− ∈ Super(a, b), where JφK ∈ Super(h⊗a, g⊗ b) is the super-
operator associated to the unitary operator given by interpreting the reversible
circuit φ. 0h⊗− ∈ Super(a, a⊗h) initialises the heap and trg ∈ Super(g⊗b, b)
is a partial trace which traces out the garbage.

11 Equivalence

In the reversible case the equality of definable circuits is the same in the classical
case and in the quantum case, but this doesn’t hold for irreversible computa-
tions. For example, in the classical case the following two circuits would be
equivalent:

����	
�

�
Not

�

≡

However, this equivalence does not hold when we move into the category of
finite quantum computations FQC. This is because in quantum computation
the control wire (or qubit) can become entangled with the target wire (qubit).
However there is another similar equivalence that holds in FQC:

����	
� ����	
�

�
Not

�

�
Not

�

≡ ����	
�

�
Not

�

This is akin to von Neumann’s measurement postulate. So, how now can we
characterise the equivalences which should always hold?

We have developed three laws to try and characterise these equivalences,
that hold in both FCC and FQC. The first law is that of garbage collection.
It states that if a circuit can be reduced into two smaller circuits such that one
part of the circuit only acts on heap inputs and on garbage outputs, then that
part of the circuit can be removed.

A f B

H
� g G

�

_ _�
�
�
�

�
�
�
�

_ _

≡ A f B

16

The second law is of the uselessness of garbage processing. This states that
if a circuit can be reduced into two smaller circuits such that one part of the
circuit only has an effect on garbage outputs, then that part can be removed.

A
f

B

H
� g G

�

≡ A
f

B

H
�

G
�

this can be alternately stated as saying that if the only outputs of (part of) a
circuit are garbage outputs, then this is equivalent to just having garbage.

g � ≡ �

and similarly we can now simplify the first law to state that a wire that simply
connects the heap to the garbage is equivalent to having nothing.

� � ≡ •

The third law is of the uselessness of heap preprocessing. This states that
if a circuit can be reduced into two smaller circuits such that one part of the
circuit only has effect on heap inputs, and the effect on the zero vector is the
identity, then that part can be removed.
if h~0 = ~0 then

A
f

B

H
�

h G
�

≡ A
f

B

H
�

G
�

An alternate notation for this would again be to state that if (part of) a circuit
only has heap inputs, and its effect on the zero vector is the identity, then this
is equivalent to just having a heap.
if h~0 = ~0 then

�
h ≡ �

We can already use these laws to give a proof of the measurement postulate.
The first step is to show the equivalence of

����	
� ����	
�

Not

Not

≡ ����	
�

����	
� Not ����	
�

Not Not

This is simple as you will notice there is no heap or garbage, so we know that
the circuits are in FQC', and in fact only use the elements from FCC'. Thus
equivalence can be shown by looking at the truth tables, which are the same.

The third controlled not is eliminated using the second law:

����	
�

�
����	
� Not ����	
�

�

�
Not Not

�

_ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _

_ _ _�
�
�
�

�
�
�
�

_ _ _

≡ ����	
�

�
����	
� Not

�

�
Not

�

17

The controlled Not operations preserve the zero vector, so we can eliminate
the first one using the third law:

����	
�

�
����	
� Not

�

�
Not

�

_ _ _�

�

�

�

�

�
_ _ _

_ _ _�
�
�
�

�
�
�
�

_ _ _

≡ ����	
�

�
Not

�

� �

Finally the bottom wire can be removed by use of the first law:

����	
�

�
Not

�

� �

_ _ _�
�
�
�

�
�
�
�

_ _ __ _ _ _ _�� ��
_ _ _ _ _

≡ ����	
�

�
Not

�

12 Further work

12.1 Dagger Categories

In his recent paper [Sel05], Selinger introduced the concept of dagger categories.
It has been suggested that our model introduced above can be given alternately
as morphisms in Selinger’s CPM category. The circuit

a
φ

b

h
� g�

can be thought of as the construction

a
φ

b

φ∗
a∗ b∗

in the CPM category.

12.2 The Measurement Calculus

One of the latest ideas in quantum computing is that of the one-way quantum
computer [RB01]. The new idea involved is that qubits are used as a resource
that get used up as the computation progresses. Physicists are especially ex-
cited about this idea as they believe that it is more likely that this sort of
quantum computer could actually be created. One-way quantum computation
is also known as Measurement based quantum computing, as it relies on the
computation propogating through the “cluster” of qubits via measurements in
various bases.

18

A computation is modelled as a sequence of measurements, whose various
bases can be dependent on the outcome of previous measurements. The compu-
tation propogates through the “cluster” via the entanglements set up between
neighbouring qubits duing the initialisation of the cluster.

To make the process of designing these computations easy, a Measurement
Calculus has been proposed [DKP04]. It has been shown that any quantum
circuit can be described in the Measurement calculus, and thus it should be
possible to create a compiler for creating measurement based computations from
quantum circuit descriptions. This idea could also be extended to QML, and
QML programs could be compiled into measurment calculus patterns.

12.3 The Quantum IO Monad

Haskell provides Monadic programming constructs to enable computations that
may involve side effects, one of the main Monads provided in Haskell is the IO
Monad, which contains all the various IO functions that can be used in a Haskell
program. Monads are used to contain impure functions that can produce side
effects, and wrap them so as to create pure functions whose results may include
a description of any side-effects that occured. These Monadic bindings enable
any side effects that may occur to propogate through the program until they
can be sensibly dealt with. A monad in Haskell is defined as a type constructor,
along with a return function, and a bind function denoted >>=. The return
function is used to put values of any datatype into the monad, and the bind
function is used to apply functions of datatypes outside the monad to the value
of that datatype contained within the monad. The result of the function being
bound must be in the monad.

The type constructor for the QIO monad is:
data QIO a = QReturn a

| MkQbit (Qbit → QIO a)
| ApplyU U (QIO a)
| Meas Qbit (Bool → QIO a)

the return function can simply be defined as the QReturn constructor, and the
bind function needs to be given for each constructor as follows:

instance Monad QIO where

return = QReturn
(QReturn a) >>= f = f a
(MkQbit g)>>= f = MkQbit (λx → g x >>= f)
(ApplyU u q)>>= f = ApplyU u (q >>= f)
(Meas x g)>>= f = (λb → g b >>= f)

The type constructors of the QIO monad describe the operations that can
be performed on a sort of “Quantum Register”. MkQbit relates to making qbits
available for the computation, ApplyU relates to the application of an actual
quantum computation, and is used to apply a unitary operation to the relevant
qbits that have been initialised. We’ll see shortly the definition of a unitary
operation. The last constructor, Meas relates to the final measurement of the
Qbits after the computation has taken place.

19

So, we’ve seen that a quantum computation is defined as a unitary operation,
which are defined in the monoid of unitary operations, denoted U . A monoid
in Haskell is again defined as a type constructor, with one of the constructors
being denoted as the identity element, or mempty . The binary operation of the
monoid is denoted mappend and the definition must be given. In the case of the
U monoid, the type constructors and the corresponding operations are defined
by:

data U = UReturn
| Rotate Qbit Rot U
| Swap Qbit Qbit U
| Cond Qbit U U

instance Monoid U where

mempty = UReturn
mappend Ureturn u = u
mappend (Rotate x r u) u ′ = Rotate x r (mappend u u ′)
mappend (Swap x y u) u ′ = Swap x y (mappend u u ′)
mappend (Cond x u u ′) u ′′ = Cond x u (mappend u ′ u ′′)

The type constructors of U represent the various operations that are re-
quired such that any unitary operation can be constructed, they correspond
very closely to the operations described early for Quantum Computations. The
Rotate constructor is for any single qubit rotation, and the actual rotation to
be performed is the given Rot which we’ll look at more closely later. The Swap
constructor is used to swap the position of the 2 given qubits. Finally the Cond
constructor is for conditionals, and the looks at the relevant qubit to decide
whether or not the given unitary is run. The mappend operation is used to
build up bigger unitary operations from smaller ones.

All single qubit rotations can be defined as a unitary 2 by 2 matrix, and
so a rotation as used in the U monoid can be defined as 4 complex numbers
that represent the entries in the corresponding unitary matrix. Some common
single qubit rotations can be given as examples, including the X rotation, which
corresponds to the classical Not, and the Hadamard rotation which is used to
take any qubit from it’s base state into an equal superposition of both base
states.

type RR = Float
type CC = Complex RR

type Rot = ((CC ,CC), (CC ,CC))

rx , rh ∈ Rot
rx = ((0, 1), (1, 0))
rh = ((1 / sqrt 2, 1 / sqrt 2), (1 / sqrt 2,−1 / sqrt 2))

because all rotations must be unitary, it is possible to create thier inverses
using the conjugate transpose as follows:

rrev ∈ Rot → Rot
rrev ((x00 , x01), (x10 , x11)) = ((conjugate x00 , conjugate x10), (conjugate x01 , conjugate x11))

and as all unitaries are by definition unitary, it is possible to create their
inverses too:

20

urev ∈ U → U
urev UReturn = UReturn
urev (Rotate x r u) = mappend (urev u) (rotate x (rrev))
urev (Swap x y u) = mappend (urev u) (swap x y)
urev (Cond x u u ′) = mappend (urev u ′) (cond x (urev u))

It’s possible now to build up quantum computations, but the aim of the
QIO monad is to enable these computations to be simulated. This is achieved
through lifting the U monoid into another monoid named Unitary. Quantum
computations that have been constructed in the U monoid must be lifted into
“Pure” computations in the Unitary monoid, where qubits are assigned to the
computations such that the computations can be run, thus changing the state
of the qubits. The way a computation is then actually simulated by a user is
by the use of a PMonad, which is a monad along with a merge function that
describes how to display the state of the qubits.

The IO Monad can be extended into a PMonad by adding a merge function
that uses the random number generator of the IO Monad to probabalisticly give
each of the qubits a true or false value.

class Monad m ⇒ PMonad m where

merge ∈ RR → m a → m a → m a

instance PMonad IO where

merge pr ift iff = do pp ← Random .randomRIO (0, 1.0)
if pr > pp then ift else iff

Another PMonad can be defined such that the two probabilities are given
as part of the result instead of being used to “collapse” the qubit amplitudes,
as in the example above.

data Prob a = Prob{unProb ∈ Vec RR a }
instance Monad Prob where

return = Prob ◦ return
(Prob ps)>>= f = Prob (ps >>= unProb ◦ f)

instance PMonad Prob where

merge pr (Prob ift) (Prob iff) = Prob ((pr < ∗ > ift)< + > ((1− pr)< ∗ > iff))
Then the eval function only needs to be coded once, but takes the PMonad

as one of it’s arguments.
With the QIO Monad it’s now possible to create quantum computations and

evaluate them. Some example QIO programs are given below:
rbit ∈ QIO Bool
rbit = do x ← mkQbit

applyU (rotate x rh)
b ← meas x
return b

The above program would create a random bit, by creating a qubit, applying
the Hadamard rotation, and then measuring the qubit. Another example is a
small program that creates a 2 qubit bell state. It proceeds by creating a qubit,
applying the Hadamard to it, then making another qubit which is entangled with
the first qubit using a conditional Not rotation. The 2 qubits are measured, and

21

a pair of the two measurements is returned. The bell state means that the
qubits are entangled such that they will always collapse to the same state as
one another.

bell ∈ QIO (Bool ,Bool)
bell = do x ← mkQbit

applyU (rotate x rh)
y ← mkQbit
applyU (cond x (rotate y rx))
b ← meas x
c ← meas y
return (b, c)

Now that we have created the QIO Monad, we would like to come up with
larger examples, including implementations of Shor’s and Grover’s algorithms.
It should also be possible to use larger quantum data structures than individual
qubits, creating them in the same way that classical data structures are defined
from classical bits. It should again be possible to construct QIO programs from
QML programs, and thus use the evaluation functions to simulate the running
of QML programs.

References

[DKP04] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The mea-
surement calculus. arXiv:quant-ph/0412135, 2004.

[Fey71] Richard Phillips Feynman. Lectures on Physics: Quantum Mechanics
v. 3 (World Student S.). Addison Wesley, 1971.

[Fey94] Richard P. Feynman. Character of Physical Law (Modern Library).
Random House USA Inc, 1994.

[GA06] Alexander Green and Thorsten Altenkirch. From reversible to irre-
versible computations. to appear in the proceedings of QPL 2006,
June 2006.

[Gro97] L. Grover. Quantum Mechanics helps in searching for a needle in a
haystack. Physics Review Letters, 79(2):325–328, 1997.

[Lan00] R. Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 44(1):261–269,
2000.

[Lap72] M. Laplaza. Coherence for distributivity. Lecture Notes in Mathemat-
ics, 281:29–72, 1972.

[RB01] R. Raussendorf and H. J. Briegel. A one-way quantum computer.
Phys. Rev. Lett., 86(22):5188–5191, May 2001.

22

[Sel04] Peter Selinger. Towards a quantum programming language. Mathe-
matical. Structures in Comp. Sci., 14(4):527–586, 2004.

[Sel05] Peter Selinger. Dagger compact closed categories and completely pos-
itive maps. In Peter Selinger, editor, Proceedings of the 3rd Inter-
national Workshop on Quantum Programming Languages, Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2005.

[Sho94] P Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings, 35th Annual Symposium on Founda-
tions of Computer Science. CA: IEEE Press, 1994.

[Tof80] Tommaso Toffoli. Reversible computing. In ICALP, pages 632–644,
1980.

[VAS06] Juliana Kaizer Vizzotto, Thorsten Altenkirch, and Amr Sabry. Struc-
turing quantum effects: Superoperators as arrows. Mathematical
Structures in Computer Science, 16(3), 2006. Also arXiv:quant-
ph/0501151.

23

