
Chapter 1

Shor in Haskell
The Quantum IO Monad
Alexander S. Green1, Thorsten Altenkirch1
Category: Research

Abstract: We present an interface from Haskell to quantum programming: the
Quantum IO monad, and use it to implement Shor’s factorisation algorithm. The
QIO monad separates reversible (i.e. unitary) and irreversible (i.e. probabilistic)
computations and provides a reversible let operation (ulet), allowing us to use
ancillas(auxiliary qubits) in a modular fashion. Exploiting Haskell’s class system
we can present our algorithms in a high level way, implementing abstractions in
the functional paradigm. We describe the implementation of Shor’s algorithm in
some detail also covering the necessary reversible arithmetic. QIO programs can
be simulated either by calculating a probability distribution or by embedding it
into the IO monad using the random number generator.

1.1 INTRODUCTION

Quantum programming exploits the strange nature of quantum physics to achieve
classically impossible tasks. Most famously Shor’s algorithm shows that on a
quantum computer we can factor a number in polynomial time, hence we could
break many encryption schemes. While physicists are working on building work-
ing quantum circuits with more than a handful of qubits [6], we computer sci-
entists grapple with the challenges quantum computing creates for software: in
designing algorithms, like Shor’s which exploit quantumness but also in design-
ing languages which support abstractions relevant for quantum computing, see [4]
for a recent survey.

Here we investigate a different approach: instead of implementing a new lan-
guage from scratch we provide a monadic interface to do quantum programming
in Haskell - the quantum IO monad (QIO). One big attraction of this approach is

1The University of Nottingham, UK; E-mails:{asg,txa }@cs.nott.ac.uk

1

that we can exploit the existing means of abstraction present in Haskell to structure
our quantum programs, indeed we will give an example of this by implementing
the classQdatawhich relates classical data-types with their quantum counterparts.

While QIO realises the infrastructure we need to control a quantum computer
from Haskell, we don’t have to wait until the physicists get their act together, we
can use the same interface to run a quantum simulator. Our approach is inspired
by the 2nd authors work with Wouter Swierstra on functional specifications of IO
[11]. Indeed, we provide some choice here: we can embedQIO into the IO monad
using pseudo-random numbers to simulate quantum randomness, we can statically
calculate the probability distribution of possible results given a quantum program
and we can simulate the classical subset of our quantum operations directly. The
latter is useful for testing components efficiently since the quantum simulation
generates a considerable overhead.

All the code described in this paper, i.e. the implementation of QIO and the
quantum algorithms implemented in it are available from the first authors web-
page [5].

Related work

There are a number of papers on modelling quantum programming in Haskell,
[8, 10, 7, 13] describe different abstractions one can use to simulate quantum
computation in a functional setting - however none uses a monadic approach in
the spirit of the IO monad. Also none of the previous work is intended to provide
an interface to a hypothetical quantum computer. Our previous work on QML
[1] proposed a first order functional quantum programming language, the present
work is more modest but gives us a stepping stone to experiment with various
alternative structures useful for structuring quantum programming and also to im-
plement future versions of languages like QML.

Overview of the paper

In section 1.2 we introduce the quantum IO monad as an interface to quantum
programming, then in section 1.3 we discuss theQdataclass which relates quan-
tum and classical data types. In section 1.4 we give some simple examples: we
implement sharing of quantum data and Deutsch’s algorithm. Our main goal is
to describe our implementation of Shor’s algorithm (section 1.5), to achieve this
goal we have to realise reversible arithmetic (section 1.6) and the Quantum Fourier
transformation (section 1.7). Finally, we discuss how QIO can actually be imple-
mented in Haskell (section 1.8).

1.2 THE QIO API

In figure 1.1 we give an overview over the QIO monad: irreversible operations live
in QIO which is the quantum analogue ofIO. Locations for quantum bits are given
by the typeQbit. Reversible operations, which correspond to unitary operations

2

Qbit ::∗
QIO::∗→ ∗
U ::∗
instanceMonad QIO

mkQbit:: Bool→QIO Qbit
applyU:: U→QIO ()
measQbit:: Qbit→QIO Bool

instanceMonoid U

swap:: Qbit→Qbit→ U
cond:: Qbit→ (Bool→ U)→ U
rot :: Qbit→ ((Bool,Bool)→ C)→ U
ulet:: Bool→ (Qbit→ U)→ U

urev:: U→ U

Prob::∗→ ∗
instanceMonad Prob

run :: QIO a→ IO a
sim :: QIO a→ Prob a
runC:: QIO a→ a

FIGURE 1.1. The QIO API

on a finite dimensional Hilbert space are elements ofU, which is a Monoid. Ir-
reversible operations are constructed usingmkQbit, applyUandmeasQBit, while
reversible ones are constructed usingswap, cond, rot andulet. Since computa-
tions living inU are reversible, there is an operationurevconstructing the reverse
computation. As mentioned in the introduction, we canrun our quantum opera-
tions using the random number generator, we can simulate (sim) them, giving rise
to a probability distributionProb. Computations living in the classical subset can
be more efficiently simulated usingrunC, however this operation will return an
error if applied to a non-classical computation.

Qubit initialisation and Measurement

The basic type on which quantum computations can be performed is the qubit
(Qbit) representing the location of a qubit in the quantum memory.Qbit resembles
IORefsin the conventionalIO monad, but we are restricted to only one data-type
here. As is the case forIORefswe can create newQbits and initialise them using
mkQbit::Bool→QIO Qbit. This operation affects the allocation of quantum cells
in the classical part of the computer and the state of the quantum memory. We
can access qubits by measuring them usingmeasQbit:: Qbit→ QIO Boolwhich
measures and hence collapses it to a classical base state.

Unitary transformations

Along with the ability to initialise qubits and then measure them, we need to define
the unitary transformations corresponding to reversible operations on quantum
data, which can be applied to these qubits. The unitary transformations are in
essence the building blocks of quantum computation, and are used (possibly in
conjunction with measurements) to actually define the programs that can be run.
The Quantum IO Monad uses the functionapplyU:: U → QIO () which when

3

given a unitary (U), is able to return a QIO computation with the unit type, and
having the effect of running the unitary with the current state of the system.

The unitaries that are available form a complete model of quantum computa-
tion, the collection we have chosen is actually not minimal as some operations
can be defined in term of others, but has proven useful when designing quantum
algorithms:

• We can swap two qubits usingswap:: Qbit→Qbit→ U.

• We can branch conditionally on the state of a qubit usingcond:: Qbit→
(Bool→U)→U, unlike measurement this operation doesn’t change the quan-
tum state irreversibly. A special case is the one-sidedifQ:

ifQ :: Qbit→ U→ U
ifQ q u= cond q(λx→ if x then u elsemempty)

• We canrotatea single qubit usingrot ::Qbit→ ((Bool,Bool)→C)→U This
corresponds to a rotation of theBloch spherewhich represents the state of a
single qubit. A rotation is given as a unitary matrix represented as a function
(Bool,Bool)→ C. We use some predefined rotations such as

unot=
[

0 1
1 0

]
, uhad= 1√

2

[
1 1
1 −1

]
anduphaseφ =

[
1 0
0 e2πiφ

]
.

• We can temporarily allocate a qubit and use it in a local computation using
ulet:: Bool→ (Qbit→ U)→ U, here the sub-computation is applied to the
temporarily allocated qubit.

These operations are subject to some side conditions to ensure that the re-
sulting operation is indeed a unitary transformation. E.g.cond requires that the
branches do not change the state of the qubit we are branching over. Otherwise
we could define the following operation

notUnitary:: U
notUnitary= cond x(λx→ if x then unot xelsemempty)

which will always leave the qubitx in the stateFalseand is hence not reversible
(and not unitary). Other conditions which have to be checked are that the specified
rotation is indeed a unitary and that the local computation restores the auxiliary
qubit to the state it was initialised in. Failure to meet these conditions results in a
run-time error.

Combining Unitaries

As mentioned previously, quantum computations are built up using these sim-
ple unitary transformations. It is important to note that they form a Monoid and
thus can be sequentially combined onto one another using Haskell’s monoidal
operations, we shall write� for mappendand• for memptyto improve readabil-
ity. Another useful note is that, by definition, all the computations that can be
constructed with the available unitaries, are themselves unitaries, and hence re-
versible. We provide a functionurev:: U → U which returns the inverse of the
given unitary.

4

Evaluation of QIO Programs

We have now seen the main API for creating programs in the QIO Monad, but
what can we do with these programs? QIO also provides three functions for eval-
uating the programs. First, there is the quantum simulator function,sim::QIO a→
Prob a, which given a QIO program will return a probability distribution of the
measured states. HereProb is a monad derived from our monadic representation
of (generalised) vector spaces (Vec), which we will explain later in section 1.8.
For example, simulating therandomBoolfunction (given in section 1.4) gives
the distribution[(True,0.5),(False,0.5)]. The second means of evaluation is the
quantum run function,run :: QIO a→ IO a, which uses the random number gen-
erator from the IO Monad to (probabilistically) return a single value for each
measurement. So running therandomBoolfunction will give Truehalf the time,
andFalsehalf the time. The last function that we introduce for evaluating QIO
programs is the classical run function,runC::QIO a→ a, which can only be used
to run QIO programs that consist of the classical subset of the available unitaries.
As these programs don’t have any side-effects the returned value is just a pure
value. If therunC function is called with a QIO program containing non-classical
unitaries then it will return an error.

1.3 REPRESENTING QUANTUM DATA

In classical computation, we hardly ever think of computations acting on single
bits, and it is much more useful to think of computations as acting on larger data-
types. TheQdataclass can be used for constructing quantum data-types from
qubits (and other previously defined quantum data-types) in much the same way.

classQdata a qa| a→ qa,qa→ a where
mkQ:: a→QIO qa
measQ:: qa→QIO a
condQ:: qa→ (a→ U)→ U

The constructors ofQdatadefine a relation between the new quantum data-type
and its classical counter-part by defining three functions which must be provided.
It must be possible for a member of the quantum data-type to be initialised from
its classical counter-part and it must also be possible to measure the quantum data
and to get a member of the classical data-type. The third constructor is used to
create conditional operations that can depend on the state of the whole quantum
data-type. ThiscondQoperation is useful for many of the quantum algorithms
that we wish to model. The simplest example of an instance ofQdatawould be
with booleans and qubits as follows:

instanceQdata Bool Qbitwhere
mkQ= mkQbit
measQ= measQbit
condQ q br= cond q br

It is easy to see thatQdatais closed under pairing:
instance(Qdata a qa,Qdata b qb)⇒Qdata(a,b) (qa,qb)

5

but even more interesting we can also create quantum lists:
instanceQdata a qa⇒Qdata[a] [qa] where

mkQ n= sequence(map mkQ n)
measQ qs= sequence(map measQ qs)
condQ qs qsu= condQ′ qs[]

wherecondQ′ [] xs = qsu xs
condQ′ (a: as) xs= condQ a(λx→ condQ′ as(xs++[x]))

Using the previous instance we can implement quantum integers, once we fix
the size of quantum registers, e.g.qIntSize= 8. Quantum integers are simply a
wrapper around lists of qubits:

newtypeQInt = QInt [Qbit]
instanceQdata Int QInt

1.4 SIMPLE EXAMPLES

To illustrate some simple uses of the Quantum IO monad we describe how to im-
plement sharing and then present one of the simplest but still interesting quantum
algorithms: Deutsch’s algorithm. We also have implemented the quantum teleport
protocol but we have to omit this from the this paper due to lack of space.

Quantum data sharing

The simplest example is to just initialise a qubit into one of its base states, and
simply return that qubit. The two following examples are for each base state
(|0〉 , |1〉) 1 respectively.
|0〉 , |1〉 :: QIO Qbit
|0〉= mkQbit False
|1〉= mkQbit True

A slightly more interesting example would be to create a qubit that is in a super-
position. We know that we have the Hadamard operation available to us which
takes a qubit from either of its base states into an equal super-position of both,
so we can just use that to produce either of the states|+〉 = 1√

2
|0〉+ |1〉 or |−〉

= 1√
2
|0〉− |1〉.
|+〉 :: QIO Qbit
|+〉= do q← |0〉

applyU(uhad q)
return q

|−〉 :: QIO Qbit
|−〉= do q← |1〉

applyU(uhad q)
return q

Interestingly, these two qubits are in different quantum states, but their behaviour
upon measurement is the same. Both of these qubits, when measured, will col-
lapse into one of the base states (|0〉 , |1〉) with equal probability. So we could
create a quantum computation that returns a random Boolean value by creating
either of the above states and measuring it. For example, using|+〉, we’d get:

1We use the ket notation introduced by Dirac to denote states.

6

randomBool:: QIO Bool
randomBool= do q← |+〉

c←measQbit
return c

Another interesting aspect of quantum computing is the no-cloning theorem, which
states that for an arbitrary quantum state|ψ〉 there is no operation to create a clone
of that state. For example you cannot use the state|ψ〉 = α |0〉+ β |1〉 to create
the state(α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉). However, it is possible to create the
stateα |00〉+β |11〉 whereby the complex amplitudes of the original state are now
“shared” in an entangled state of the two qubits. This sharing operation can be
achieved using a controlled not operation with the input state|ψ〉 acting as the
control qubit, over a new qubit initialised in the state|0〉. This operation is not
equivalent to a cloning of the original state because the two output qubits are en-
tangled, meaning that operations on one of them may have side-effects on the
other. This sharing operation can easily be modelled in the QIO Monad.

share:: Qbit→QIO Qbit
share qa= do qb← |0〉

applyU(ifQ qa(unot qb))
return qb

It is modelled as a function that takes a qubit, and returns the new qubit with
which the input state is now entangled.

A bell state [2] is a maximally entangled quantum state of two-qubits, and
follows from John S. Bell’s famous Bell inequality. The correlations between the
two entangled qubits cannot be explained without quantum mechanics, and are
the foundations behind the concept of quantum teleportation. Thesharefunction
can easily be used to create a bell state as follows:

bell:: QIO (Qbit,Qbit)
bell = do qa← |+〉

qb← share qa
return(qa,qb)

The |+〉 function creates a qubit in the state|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 and this is

then shared with a new qubit. The function returns a pair of qubits in the state
|φ〉= 1√

2
|00〉+ 1√

2
|11〉, which is a bell state in the|0〉, |1〉 basis.

Deutsch’s Algorithm

Deutsch’s Algorithm [3] was presented as one of the first and simplest quantum al-
gorithms that could be proven to provide a solution to its problem quicker than any
classical solution. The problem involves being given a functionf :: Bool→ Bool
and being asked to calculate whether the function is balanced or constant. There
are only four possible functions thatf can be, which relate to the identity function,
the not function, the constant False function or the constant True function. Clas-
sically it can be shown that two applications off are required to tell whether it is
one of the balanced or one of the constant functions, but in a quantum computer
it is possible to get the answer having only had to run the function f once (albeit

7

over a quantum state).
In the QIO monad the algorithm can easily be modelled: we initialise two

qubits in theqplusandqminusstates, and then conditionally negate the second
qubit depending onf applied to the first qubit. Then we apply the Hadamard
transformation to the first qubit and measure it. This is confusing at the first
glance because classically it seems that the first qubit should be unaffected by
the operation we have performed. But indeed, doing the operation in theqminus,
qplus-base does the trick and we have to consultf only once.

deutsch:: (Bool→ Bool)→QIO Bool
deutsch f= do x← |+〉

y← |−〉
applyU(cond x(λb→ if f b

then unot y
else•)

applyU(uhad x)
measQ x

In either of the cases wheref was a constant function then the measurement will
yield False(with probability 1), and in the cases wheref is a balanced function
the measurement will yieldTrue(again with probability 1).

1.5 SHOR’S ALGORITHM

In this section we present Shor’s algorithm to factor integers, which consists of
a classical probabilistic algorithm reducing factorisation to period finding and a
quantum part which solves the latter problem. The quantum algorithm relies on
implementations of reversible arithmetic and on the Quantum Fourier Transform,
which we describe in subsequent sections.

Reduction of factorisation to period finding

The reduction of factorisation to period finding shows us that for finding the fac-
tors ofN, we need to find a valuex < N which is co-prime toN, e.g.x < N such
that gcd(x,N) = 1. Which can be done classically with the help of the random
number generator in the IO monad.

rand coprime:: Int→ IO Int
rand coprime n= do x← Random.randomRIO(2,n)

if gcd x n≡ 1 then return xelserand coprime n
Using the values ofx andN it is necessary to create a functionf (j) = x jmodN

which can be implemented such thatj can be in a quantum state. Shor’s algorithm
is used to find the period,a, of this function, which can then (hopefully) be used
to find factors ofN. In fact, the valuea returned by this method cannot always be
used to find the factors ofN (e.g. if a is odd, orxa/2 = −1modN), if this is the
case then it is necessary to start again with a different value forx. It can be shown
that a suitable value fora will be returned using this method with a probability
of at least1

2. The following code assumes that we have already implemented

8

shor:: Int→ Int→QIO Int to return a value fora.
factor:: Int→ IO (Int, Int)
factor n| even n = return(2,2)

| otherwise= do x← rand coprime n
a← run (shor x n)
let xa= x↑ (a/2)

in if odd a∨ xa≡ (n−1) ‘mod‘ n
then factor n
elsereturn(gcd(xa+1) n,gcd(xa−1) n)

Once a suitable value fora is found then we know that one ofgcd(xa/2±1,N)
is a non-trivial factor of N. So at least one of the values returned by thefactor
function will be a non-trivial factor of the input. The only part of the algorithm
that requires a quantum computer to be calculated efficiently is the use of Shor’s
algorithm to find the period of the functionx jmodN.

Period finding

We will now explain how to implementshor using reversible arithmetic and the
quantum Fourier transform whose implementations are explained in sections 1.6
and 1.7.

The circuit in Figure 1.2 shows a simplified solution to Shor’s algorithm, over
the necessaryx jmodNfunction. The inputs to the circuit are two quantum regis-

|0〉 / H⊗t
| j〉

• QFT† 76540123M

|1〉 / x jmodN

FIGURE 1.2. Shor’s algorithm

ters. The algorithm first uses Hadamard rotations to put one of the quantum regis-
ters into a super-position, then uses this super-position to conditionally apply the
givenx jmodNfunction to the second qubit register. An application of the inverse
Quantum Fourier Transform finishes off the algorithm before a measurement of
the top register gets the result

hadamards:: QInt→ U
hadamards(QInt []) = •
hadamards(QInt (x : xs)) = uhad x�hadamards(QInt xs)
shorU:: QInt→QInt→QInt→ Int→ U
shorU i0 i1 x n= hadamards i0�

condQ i0(λa→modExp n a x i1)�
urev(qft i0)

shor:: Int→ Int→QIO Int
shor x n= do ((i0, i1),qx)←mkQ((0,1),x)

9

applyU(shorU i0 i1 qx n)
p←measQ i0
return p

1.6 REVERSIBLE ARITHMETIC

Our presentation here is based on the circuits for reversible arithmetic as described
in [12]. The paper describes the circuits building up from a simple reversible
adder, up-to a circuit that performs modular exponentiation. These circuits have
to be able to act on registers of qubits such that they perform the correct operation
even when for example adding two quantum registers that are in super-positions
of any of their possible base states. This basically means that every circuit for
performing quantum arithmetic must be a reversible circuit. We are using the
Quantum IO Monad, and not quantum circuits, so we shall go through in detail
how our arithmetic functions work and how they relate to the circuits in [12].

Reversible Addition

In simple boolean arithmetic circuits, the addition of integers is performed by
going through the bits, adding the corresponding bits, and keeping track of any
overflow. We can express both the calculation of the current sum and the calcula-
tion of the carry as reversible algorithms:

sumq:: Qbit→Qbit→Qbit→ U
sumq qc qa qb=

cond qc(λc→
cond qa(λa→ if a 6≡ c then unot qbelse•))

carry:: Qbit→Qbit→Qbit→Qbit→ U
carry qci qa qb qcsi=

cond qci(λci→
cond qa(λa→

cond qb(λb→
if ci ∧ a∨ ci ∧ b∨ a∧ b then unot qcsielse•)))

We note thatcarry needs access to the current and the next carry-bit, whilesumq
only depends on the current qubits. Using these functions we could now imple-
ment reversible addition as a function of type

qadd:: QInt→QInt→QInt→Qbit→ U

qadd(QInt qas) (QInt qbs) (QInt qcs) qc= qadd′ qas abs qcs qc
whereqadd′ [] [] [] qc= •

qadd′ [qa] [qb] [qci] qc= carry qci qa qb qc�
sumq qci qa qb

qadd′ (qa: qas) (qb: qbs) (qci: qcsi: qcs) qc= carry qci qa qb qcsi�
qadd′ qas qbs(qcsi: qcs) qc�
urev(carry qci qa qb qcsi) �
sumq qci qa qb

10

The algorithm requires an additional 3rd register which needs to be initialised
to 0 to store the auxiliary carry bits. We have designed the algorithm so that it
leaves this register in the same state 0, as it has found it. Hence, we could mea-
sure this additional register without affecting the rest of the computation. How-
ever, measuring the register means that we have to define a potentially irreversible
operation living inQIO, which means that we cannot use addition to derive other
unitary operations, which is exactly what we want to do in the Shor algorithm.
The other alternative is to thread the auxiliary qubits through all the arithmetic
operations we define, reusing it at other places where we need temporary qubits.
This leads to a very low level design, where memory management is explicit —
this leads to a drastic loss of modularity.

This is exactly the reason why we needulet, which temporarily creates qubits
which can be used in a unitary operation under the condition that they are restored
to the state they were found in.

qadd:: QInt→QInt→Qbit→ U

qadd(QInt qas) (QInt qbs) qc=
ulet False(qadd′ qas qbs)
whereqadd′ [] [] qc= ifQ qc(unot qc′)

qadd′ (qa: qas) (qb: qbs) qc=
ulet False(λqc′→ carry qc qa qb qc′�

aadd′ qas qbs qc′�
urev(carry qc qa qb qc′))�

sumq qc qa qb
Extending on this function for reversible addition, we can carry on following

[12] and create the necessary functions to build up to the goal of a reversible
modular exponentiation algorithm.

1.7 THE QUANTUM FOURIER TRANSFORM

The Quantum Fourier Transformation (QFT) is basically the fast, discrete Fourier
Transformation applied to a quantum register, where the discrete Fourier trans-
form maps functions in the time domain into functions in the frequency domain,
or in other words, decomposes a function in terms of sinusoidal functions of dif-
ferent frequencies. In Shor’s algorithm the inverse Fourier transformation is used
to recover the frequency representation of the modular exponential, thus giving
direct access to the period. The QFT as developed in [9], pp. 216-221 can be
easily encoded in the QIO monad, giving rise to a foldr on a list of qubits:

qft :: [Qbit]→ U
qft qs= condQ qs(λbs→ qftAcu qs bs[])
qftAcu:: [Qbit]→ [Bool]→ [Bool]→ U
qftAcu[] [] = •
qftAcu(q: qs) (b: bs) cs= qftBase cs q�qftAcu qs bs(b: cs)
qftBase:: [Bool]→Qbit→ U
qftBase bs q= f ′ bs q2

11

where f ′ [] q = uhad q
f ′ (b: bs) q x = if b then (rotK x q)� f ′ bs q(x+1)

elsef ′ bs q(x+1)
rotK :: Int→Qbit→ U
rotK k q= uphase q(1.0/ (2.0↑k))

Although we have created the QFT here, Shor’s algorithm requires the inverse
QFT. Fortunately, because of the reversible nature of unitaries, the inverse QFT
can be given byurev qft.

1.8 IMPLEMENTING QIO

We give here only a very high level sketch of our implementation, for details
please consult our code, which is available on-line [5]. As suggested in [11]
we follow a two-level approach, representing quantum computation first syntacti-
cally:

data U = UReturn| Rot Qbit((Bool,Bool)→ C) U
| Swap Qbit Qbit U| Cond Qbit(Bool→ U) U | Ulet Bool(Qbit→ U) U

data QIO a= QReturn a|MkQbit Bool(Qbit→QIO a) | ApplyU U(QIO a)
|Meas Qbit(Bool→QIO a)

and then interpreting both data-types in the appropriate semantical domain. One
advantage of this approach is that we can interpreturevas a function on the syntax,
another one relevant for future work is that we can also express compilation.

The classical case

It is useful to first look at the implementation of the classical fragment, before
describing the quantum case.We represent a classical heap astypeHeap= Qbit→
Maybe Bool, whereNothing corresponds to an uninitialised bit. Classically, a
unitary is represented as

newtypeUnitary = U{unU:: Int→ Heap→ Heap}
where the integer argument corresponds to the number of currently allocated bits.
It is straightforward to derive an instance ofMonoid:

instanceMonoid Unitarywhere
•= U (λfv bs→ bs)
U f �U g = U (λfv h→ g fv(f fv h))

It is then relatively straightforward to implement the remaining operations on uni-
taries, e.g.

uLet:: Bool→ (Qbit→ Unitary)→ Unitary
uLet b ux= U (λfv h→ unU (ux fv) (fv+1) (update h fv b))

which usesupdate::Heap→Qbit→ Bool→Heap. We define a quantum state as
data State= State{ fv:: Int,heap:: Heap}

and implement the classicalQIO fragment by interpreting bothU andQIO using:
runU :: U→ Unitary

runQState:: QIO a→ State→ a

12

The 2nd function could have been defined using the state monad. We deriverunC
by applyingrunQStateto an initial empty state.

Representing vectors

Before we can embark on implementing the quantum case, we need a represen-
tation of vectors. Our current approach is based on earlier work, in particular the
representation used in [13]. We basically represent a vector as an association list
associating amplitudes with values, e.g. heaps:

newtypeVec x a= Vec{unVec:: [(a,x)]} deriving Show
This structure gives rise to a monad:

instanceNum n⇒Monad(Vec n) where
return a= Vec[(a,1)]
(Vec ms)>>= f = Vec[(b, i ∗ j) | (a, i)←ms,(b, j)← unVec(f a)]

In this approach we are not immediately adding up tuples whose first component
is equal. While it would be more efficent to do so, we would loose thatVec is a
monad, thus complicating our implementation. Instead we define an operation:

norm:: Num x⇒ (a→ a→ Bool)→ (Vec x a)→ (Vec x a)
which normalises a vector with respect to a given equality predicate. We can’t use
the classEq here since we are going to use it onHeapwhich only has equality if
we know the number of qubits currently used. We also implement the classical
operation on vector spaces, i.e. addition and multiplication with a scalar:

(�) :: Num x⇒ x→ (Vec x a)→ Vec x a

(⊕) :: (Vec x a)→ (Vec x a)→ Vec x a

The quantum case

We represent a pure quantum state as a vector of complex valued heaps:
type Pure= VecC Heap

Unitaries are represented as functions fromHeapto Pure indexed by the number
of qubits currently in use:

newtypeUnitary = U{unU:: Int→ Heap→ Pure}
It is useful to note that for any number of qubitsn the relevant functionsHeap→
Pure correspond ton× n complex matrices. Indeed showing thatUnitary is a
monoid is very similar to the classical case, replacing application by a monadic
bind:

instanceMonoid Unitarywhere
•= U (λfv h→ return h)
U f �U g = U (λfv h→ f fv h>>=g fv)

A quantum state is given by
data State= State{ free:: Int,pure:: Pure}

To model measurement we introduce the concept of a probability monad, which
allows us to merge computations with different probabilities:

classMonad m⇒ PMonad mwhere
merge::R→m a→m a→m a

13

The real number argumentp corresponds to the probability that the first computa-
tion is chosen, the 2nd one is chosen with probability 1− p. It is straightforward
to show thatIO is aPMonad:

instancePMonad IOwhere
merge pr ift iff= do pp← Random.randomRIO(0,1.0)

if pr >pp then ift elseiff
Another usefulPMonadis the type of probability distributions:

data Prob a= Prob{unProb:: VecR a}
which uses multiplication and addition of vectors:

instancePMonad Probwhere
merge pr(Prob ift) (Prob iff) = Prob((pr� ift)⊕ ((1−pr)� iff))

To implement measurements we have to be able to calculate the probability
amplitude of a given pure state:

pa:: Pure→ R
pa(Vec as) = foldr (λ(,k) p→ p+amp k) 0 as

We can split a pure state depending on the value of a certain qubit whilst calculat-
ing the probability amplitude:

data Split= Split{p::R, ifTrue, ifFalse:: Pure}
split :: Pure→Qbit→ Split

Finally we implement evaluation wrt to any probability monad:
evalWith:: PMonad m⇒QIO a→ State→m(a,State)

In the case for measurement we use the functionsplit:
evalWith(Meas x g) (State f p) =

let Split pr ift iff = split p x
in merge pr

(evalWith(g True) (State f ift))
(evalWith(g False) (State f iff))

We can now obtain bothsimandrun by using the fact that bothIO andProb are
probability monads and using an initial state as before in the classical case.

1.9 CONCLUSIONS AND FURTHER WORK

With the Quantum IO monad we have proposed a simple, low level interface to
quantum programming, naturally extending Haskell’s IO monad. Using the power
of functional abstraction we can structure our quantum programming, exploiting
the existing Haskell mechanisms such as type classes as we have already demon-
strated with theQdataclass. With theulet-construct we have also identified an
important control structure which is essential for modular quantum algorithms.

Our current implementation is actually too inefficent to even calculate simple
instances of Shor’s algorithm. We will look into using more efficent data struc-
tures to be able to actually simulate the algorithm.

At various places we have come across side conditions which are inexpressible
in Haskell, e.g. the side conditions forcondor ulet. We would like to explore
how dependent types can be used to overcome this limitation, reimplementing

14

QIO in Agda, Epigram or Coq. This would also provide a base for reasoning
about quantum algorithms, using a more abstract model based on density matrices.
Another line of work is to implement a compiler from the Quantum IO monad
into a more low level combinatorial model which could be directly executed on
a quantum computer, either based on the traditional quantum gate model or on
a more recent proposal such as measurement based quantum computing. At the
other end, as we have already mentioned we would like to use the QIO monad
as a testbed for new quantum control and data structures, continuing our work on
QML.

REFERENCES

[1] T. Altenkirch and J. J. Grattage. A functional quantum programming language. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science,
LICS 2005, pages 249–258. IEEE Computer Society Press, 2005.

[2] J. S. Bell. On the Einstein–Podolsky–Rosen paradox.Physics, 1(??):195–200, 1964.

[3] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer.Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 400(1818):97–117, 1985.

[4] S. J. Gay. Quantum programming languages: Survey and bibliography.Mathematical
Structures in Computer Science, 16(4), 2006.

[5] A. Green. The Quantum IO Monad, source code. http://www.cs.nott.ac.uk/˜asg/QIO/,
2008.

[6] W. Hensinger. Quantum computing with trapped ions. invited talk, at the second
QNET Workshop, December 2007.

[7] J. Karczmarczuk. Structure and interpretation of quantum mechanics — a functional
framework. InProceedings of the ACM SIGPLAN Workshop on Haskell. ACM Press,
2003.

[8] S.-C. Mu and R. Bird. Functional quantum programming. InProceedings of the 2nd
Asian Workshop on Programming Languages and Systems, 2001.

[9] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum Information.
Cambridge University Press, October 2000.

[10] A. Sabry. Modelling quantum computing in Haskell. InProceedings of the ACM
SIGPLAN Workshop on Haskell. ACM Press, 2003.

[11] W. Swierstra and T. Altenkirch. Beauty in the beast: A functional semantics of the
awkward squad. InHaskell ’07: Proceedings of the ACM SIGPLAN workshop on
Haskell, 2007.

[12] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary arithmetic
operations, 1995.

[13] J. K. Vizzotto, T. Altenkirch, and A. Sabry. Structuring quantum effects: Superop-
erators as arrows.Mathematical Structures in Computer Science, 16(3), 2006. Also
arXiv:quant-ph/0501151.

15

