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Introduction

• Quantum Computing is an exciting new area in
computer science.

• certain Quantum Algorithms can offer an exponential
speed up over the best known classically.

• Shor’s algorithm can factor large numbers in

polynomial time O((logN)3) .

• Classically, the best known solution is O(2(logN)
1
3 )

which for large numbers is computationally infeasible.

• The RSA encryption protocol uses this assumption,
and hence could be “broken” by a quantum computer.

Shor in Haskell The Quantum IO Monad – p.2/27



Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

Shor in Haskell The Quantum IO Monad – p.3/27



Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

Shor in Haskell The Quantum IO Monad – p.3/27



Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

Shor in Haskell The Quantum IO Monad – p.3/27



Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

• Quantum teleportation enables the use of quantum
key distribution, allowing provably secure
communication.

Shor in Haskell The Quantum IO Monad – p.3/27



Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

• Quantum teleportation enables the use of quantum
key distribution, allowing provably secure
communication.

• There are already commercial companies offering
quantum crytography products ( BB84 )...
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Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

• We introuduce the Quantum IO Monad (QIO), as an
interface from Haskell to Quantum Computation

• The Monadic structure is used to deal with the
side-effects.

• While the design of quantum algorithms can make use
of the abstractions available in Haskell.

• I shall now give a brief introduction to both quantum
computing and the Quantum IO Monad .
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• In QIO we define the type

Qbit :: ∗

• along with the initialisation function

mkQbit :: Bool → QIO Qbit

•
|0〉 , |1〉 :: QIO Qbit
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|1〉 = mkQbit True
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Qubits

• Qubits have 2 base states ( |0〉 and |1〉 )...

• In QIO we define the type

Qbit :: ∗

• along with the initialisation function

mkQbit :: Bool → QIO Qbit

•
|0〉 , |1〉 :: QIO Qbit

|0〉 = mkQbit False

|1〉 = mkQbit True

• Qubits can exist in a super-position of both states
simultaneously.
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Qubits

• An arbitrary state of a single qubit system can be given
by |ψ〉 = α |0〉+ β |1〉

• where α, β ∈ C are the complex amplitudes of each
base state.

• and with the side condition that α2 + β2 = 1 .

• The Bloch sphere can be used to visualise this...
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Bloch Sphere

An arbitrary (single
qubit) state can be
thought of as any point
on the surface of the
sphere.
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• Computations that act on qubits are often referred to
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Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

• This follows from the fact that they must keep the sum
of the squares of the amplitudes equal to 1.

• We like to refer to single qubit unitary operators as
Rotations (think of them as rotating a point around
the surface of the Bloch sphere).

• In QIO, unitary operators occupy the type

U :: ∗

• Rotations are used in QIO to create the single qubit
super-positions.
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Qubit Rotations

• Rotations are defined by unitary 2 by 2 complex
valued matrices, e.g.

unot =

[

0 1

1 0

]

, uhad = 1√
2

[

1 1

1 −1

]

and uphase φ =

[

1 0

0 e2πiφ

]

.
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Qubit Rotations

• Rotations are defined by unitary 2 by 2 complex
valued matrices, e.g.

unot =

[

0 1

1 0

]

, uhad = 1√
2

[

1 1

1 −1

]

and uphase φ =

[

1 0

0 e2πiφ

]

.

• using the type

type Rotation = ((Bool ,Bool)→ C)

• which is extended to a member of the U type by

rot :: Qbit → Rotation → U
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Qubit Rotations

• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()
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• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()

• So we could now create the state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉

which is an equal super-position of the single qubit
base states.
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Qubit Rotations

• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()

• So we could now create the state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉

which is an equal super-position of the single qubit
base states.

•
|+〉 :: QIO Qbit

|+〉 = do q ← |0〉

applyU (uhad q)

return q
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arbitrary super-position a quantum system is in .
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Measurement

• Measurement in QIO is by use of

measQbit :: Qbit → QIO Bool

• We could now use the |+〉 state to create a random
boolean.

•
randomBool :: QIO Bool

randomBool = do q ← |+〉

c ← measQbit

return c
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Multiple Qubits...

• A 2-qubit system can be in a super-postion of the base
states |00〉 , |01〉 , |10〉 , and |11〉 .

• For an n-qubit system, the state can occupy a
super-position of any of the 2n bit strings of length n.

• We still have the side-condition that the sum of the
squared amplitudes must equal 1 .
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Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

• We use • as the identity operator, and � for the
append operation.

• It is possible to swap the position of 2 qubits

swap :: Qbit → Qbit → U
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Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

• We use • as the identity operator, and � for the
append operation.

• It is possible to swap the position of 2 qubits

swap :: Qbit → Qbit → U

• and create conditional operations

cond :: Qbit → (Bool → U )→ U
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Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)
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Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

• The Unitary aspect of U defines exactly that they are
reversible, and we provide the function urev :: U → U

which constructs the inverse.

• The No Cloning theorem tells us that we cannot create
a copy of an arbitrary quantum state.

• We can however “share” the state of one qubit with
another.

• e.g. from a state |φ〉 = α |0〉+ β |1〉
we can create the state |ψ〉 = α |00〉+ β |11〉 .
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Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb
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Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

• We can now use this to create the bell state
1√
2
|00〉+ 1√

2
|11〉 from the |+〉 state.
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Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

• We can now use this to create the bell state
1√
2
|00〉+ 1√

2
|11〉 from the |+〉 state.

•
bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)
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Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉
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Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

• Meaning that the measurement has collapsed the
entire state into either |00〉 or |11〉 .

• Measuring the first qubit, has the side-effect of also
collapsing the second qubit into one of its base states.

• In this example, the 2 qubits are Entangled . The state
of one depends on the state of the other.

• In QIO, conditional statements are used to introduce
entanglement into a computation.
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Deutsch’s Algorithm

• We now have everything we need to start defining
quantum computations in Haskell. E.g. Deutsch’s
Algorithm
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Deutsch’s Algorithm

• We now have everything we need to start defining
quantum computations in Haskell. E.g. Deutsch’s
Algorithm

•
deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (cond x (λb →

if f b then unot y

else •)

applyU (uhad x )

measQbit x
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Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?
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Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

• We could get our handy USB quantum register, and
just get it to evaluate the program for us...

• but it doesn’t exist yet!

• So, we also provide three evaluation functions for QIO
Programs

•

run :: QIO a → IO a

sim :: QIO a → Prob a

runC :: QIO a → a
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Running Quantum Computations

• e.g.

> run (deutsch ¬)

True

> sim (deutsch id)

[(True, 1.0)]

> run (deutsch (λx → True))

False

> sim (deutsch (λx → False))

[(False, 1.0)]

> sim randomBool

[(True, 0.5), (False, 0.5)]
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Quantum Data-types

• We don’t always want to think of quantum
computations simply as acting on qubits, for example,
it would be natural to think of Shor’s algorithm as
having the type shor :: Int → QIO Int .
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• We decided to implement a class of Quantum
Data-types , that defines a relation between a classical
type, and a corresponding quantum version of that
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Quantum Data-types

• We don’t always want to think of quantum
computations simply as acting on qubits, for example,
it would be natural to think of Shor’s algorithm as
having the type shor :: Int → QIO Int .

• We decided to implement a class of Quantum
Data-types , that defines a relation between a classical
type, and a corresponding quantum version of that
type.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

condQ :: qa → (a → U )→ U
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Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.
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Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

• We can also define pairs, lists...

•

instance Qdata a qa ⇒ Qdata [a ] [qa ] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

condQ qs qsu = condQ ′ qs [ ]

where condQ ′ [ ] xs = qsu xs

condQ ′ (a : as) xs = condQ a (λx → condQ ′ as (xs ++ [x ]))
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Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

• We can also define pairs, lists...

•

instance Qdata a qa ⇒ Qdata [a ] [qa ] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

condQ qs qsu = condQ ′ qs [ ]

where condQ ′ [ ] xs = qsu xs

condQ ′ (a : as) xs = condQ a (λx → condQ ′ as (xs ++ [x ]))

• and a Quantum Integer , which converts an Int to a
(fixed-length) list of booleans, and defines a QInt as a
synonym for a list of qubits.
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More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.
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More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.

• The paper goes into much more detail about the
implementation of Shor’s algorithm and the QIO
evaluator.

• Shor’s algorithm required that we have a set of unitary
operators that can perform reversible arithmetic ,
specifically modular exponentiation.

• Many of the arithmetic functions require auxilliary
qubits, so we have also added a unitary-let operation
ulet :: Bool → (Qbit → U )→ U that enables the
system to keep track of them.
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More QIO Programs

• Shor’s algorithm also requires a unitary operator that
performs the Quantum Fourier Transform , and details
of the implementation can also be found in the paper.
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of the implementation can also be found in the paper.

• The Quantum Fourier Transform is essentially an
implementation of the discrete Fourier transform, that
can act on a quantum state, and is used in many
quantum algorithms.
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More QIO Programs

• Shor’s algorithm also requires a unitary operator that
performs the Quantum Fourier Transform , and details
of the implementation can also be found in the paper.

• The Quantum Fourier Transform is essentially an
implementation of the discrete Fourier transform, that
can act on a quantum state, and is used in many
quantum algorithms.

• It’s use in Shor’s algorithm is to find the order of a
modular exponentiation function that’s constructed
depending on the input.
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Problems?

• As it stands, conditionals can be created that aren’t
unitary.

Shor in Haskell The Quantum IO Monad – p.25/27



Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)
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notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.
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Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.
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Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...
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Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.
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Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...
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• We are also looking at possibly extending QIO to be a
full language...
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Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

• We are also looking at possibly extending QIO to be a
full language...

• The current implementation of QIO is available online:
http://www.cs.nott.ac.uk/˜asg/QIO/
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Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

• We are also looking at possibly extending QIO to be a
full language...

• The current implementation of QIO is available online:
http://www.cs.nott.ac.uk/˜asg/QIO/

• Thank you!
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