
Shor in Haskell
The Quantum IO Monad

Trends in Functional Programming
May 28th 2008

Alexander S. Green and Thorsten Altenkirch

asg@cs.nott.ac.uk, txa@cs.nott.ac.uk

School of Computer Science,

The University of Nottingham

Shor in Haskell The Quantum IO Monad – p.1/27

Introduction

• Quantum Computing is an exciting new area in
computer science.

Shor in Haskell The Quantum IO Monad – p.2/27

Introduction

• Quantum Computing is an exciting new area in
computer science.

• certain Quantum Algorithms can offer an exponential
speed up over the best known classically.

Shor in Haskell The Quantum IO Monad – p.2/27

Introduction

• Quantum Computing is an exciting new area in
computer science.

• certain Quantum Algorithms can offer an exponential
speed up over the best known classically.

• Shor’s algorithm can factor large numbers in

polynomial time O((logN)3) .

Shor in Haskell The Quantum IO Monad – p.2/27

Introduction

• Quantum Computing is an exciting new area in
computer science.

• certain Quantum Algorithms can offer an exponential
speed up over the best known classically.

• Shor’s algorithm can factor large numbers in

polynomial time O((logN)3) .

• Classically, the best known solution is O(2(logN)
1
3)

which for large numbers is computationally infeasible.

Shor in Haskell The Quantum IO Monad – p.2/27

Introduction

• Quantum Computing is an exciting new area in
computer science.

• certain Quantum Algorithms can offer an exponential
speed up over the best known classically.

• Shor’s algorithm can factor large numbers in

polynomial time O((logN)3) .

• Classically, the best known solution is O(2(logN)
1
3)

which for large numbers is computationally infeasible.

• The RSA encryption protocol uses this assumption,
and hence could be “broken” by a quantum computer.

Shor in Haskell The Quantum IO Monad – p.2/27

Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

Shor in Haskell The Quantum IO Monad – p.3/27

Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

Shor in Haskell The Quantum IO Monad – p.3/27

Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

Shor in Haskell The Quantum IO Monad – p.3/27

Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

• Quantum teleportation enables the use of quantum
key distribution, allowing provably secure
communication.

Shor in Haskell The Quantum IO Monad – p.3/27

Introduction

• Other quantum algorithms can offer a speed up over
the provably fastest classical solutions.

• Grover’s algorithm offers a polynomial speed-up for
searching an unsorted database

• Deutsch’s algorithm can find out if a boolean function
is constant or balanced with only one application of
the function.

• Quantum teleportation enables the use of quantum
key distribution, allowing provably secure
communication.

• There are already commercial companies offering
quantum crytography products (BB84)...

Shor in Haskell The Quantum IO Monad – p.3/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

Shor in Haskell The Quantum IO Monad – p.4/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

Shor in Haskell The Quantum IO Monad – p.4/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

• We introuduce the Quantum IO Monad (QIO), as an
interface from Haskell to Quantum Computation

Shor in Haskell The Quantum IO Monad – p.4/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

• We introuduce the Quantum IO Monad (QIO), as an
interface from Haskell to Quantum Computation

• The Monadic structure is used to deal with the
side-effects.

Shor in Haskell The Quantum IO Monad – p.4/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

• We introuduce the Quantum IO Monad (QIO), as an
interface from Haskell to Quantum Computation

• The Monadic structure is used to deal with the
side-effects.

• While the design of quantum algorithms can make use
of the abstractions available in Haskell.

Shor in Haskell The Quantum IO Monad – p.4/27

Introduction

• However, the state of the art for quantum computer
hardware is still only a few qubits.

• We would like to look at quantum computing from a
Functional Programming point of view.

• We introuduce the Quantum IO Monad (QIO), as an
interface from Haskell to Quantum Computation

• The Monadic structure is used to deal with the
side-effects.

• While the design of quantum algorithms can make use
of the abstractions available in Haskell.

• I shall now give a brief introduction to both quantum
computing and the Quantum IO Monad .

Shor in Haskell The Quantum IO Monad – p.4/27

Qubits

• Qubits have 2 base states (|0〉 and |1〉)...

Shor in Haskell The Quantum IO Monad – p.5/27

Qubits

• Qubits have 2 base states (|0〉 and |1〉)...

• In QIO we define the type

Qbit :: ∗

Shor in Haskell The Quantum IO Monad – p.5/27

Qubits

• Qubits have 2 base states (|0〉 and |1〉)...

• In QIO we define the type

Qbit :: ∗

• along with the initialisation function

mkQbit :: Bool → QIO Qbit

Shor in Haskell The Quantum IO Monad – p.5/27

Qubits

• Qubits have 2 base states (|0〉 and |1〉)...

• In QIO we define the type

Qbit :: ∗

• along with the initialisation function

mkQbit :: Bool → QIO Qbit

•
|0〉 , |1〉 :: QIO Qbit

|0〉 = mkQbit False

|1〉 = mkQbit True

Shor in Haskell The Quantum IO Monad – p.5/27

Qubits

• Qubits have 2 base states (|0〉 and |1〉)...

• In QIO we define the type

Qbit :: ∗

• along with the initialisation function

mkQbit :: Bool → QIO Qbit

•
|0〉 , |1〉 :: QIO Qbit

|0〉 = mkQbit False

|1〉 = mkQbit True

• Qubits can exist in a super-position of both states
simultaneously.

Shor in Haskell The Quantum IO Monad – p.5/27

Qubits

• An arbitrary state of a single qubit system can be given
by |ψ〉 = α |0〉+ β |1〉

Shor in Haskell The Quantum IO Monad – p.6/27

Qubits

• An arbitrary state of a single qubit system can be given
by |ψ〉 = α |0〉+ β |1〉

• where α, β ∈ C are the complex amplitudes of each
base state.

Shor in Haskell The Quantum IO Monad – p.6/27

Qubits

• An arbitrary state of a single qubit system can be given
by |ψ〉 = α |0〉+ β |1〉

• where α, β ∈ C are the complex amplitudes of each
base state.

• and with the side condition that α2 + β2 = 1 .

Shor in Haskell The Quantum IO Monad – p.6/27

Qubits

• An arbitrary state of a single qubit system can be given
by |ψ〉 = α |0〉+ β |1〉

• where α, β ∈ C are the complex amplitudes of each
base state.

• and with the side condition that α2 + β2 = 1 .

• The Bloch sphere can be used to visualise this...

Shor in Haskell The Quantum IO Monad – p.6/27

Bloch Sphere

An arbitrary (single
qubit) state can be
thought of as any point
on the surface of the
sphere.

Shor in Haskell The Quantum IO Monad – p.7/27

Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

Shor in Haskell The Quantum IO Monad – p.8/27

Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

• This follows from the fact that they must keep the sum
of the squares of the amplitudes equal to 1.

Shor in Haskell The Quantum IO Monad – p.8/27

Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

• This follows from the fact that they must keep the sum
of the squares of the amplitudes equal to 1.

• We like to refer to single qubit unitary operators as
Rotations (think of them as rotating a point around
the surface of the Bloch sphere).

Shor in Haskell The Quantum IO Monad – p.8/27

Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

• This follows from the fact that they must keep the sum
of the squares of the amplitudes equal to 1.

• We like to refer to single qubit unitary operators as
Rotations (think of them as rotating a point around
the surface of the Bloch sphere).

• In QIO, unitary operators occupy the type

U :: ∗

Shor in Haskell The Quantum IO Monad – p.8/27

Qubit Rotations

• Computations that act on qubits are often referred to
as Unitary Operators .

• This follows from the fact that they must keep the sum
of the squares of the amplitudes equal to 1.

• We like to refer to single qubit unitary operators as
Rotations (think of them as rotating a point around
the surface of the Bloch sphere).

• In QIO, unitary operators occupy the type

U :: ∗

• Rotations are used in QIO to create the single qubit
super-positions.

Shor in Haskell The Quantum IO Monad – p.8/27

Qubit Rotations

• Rotations are defined by unitary 2 by 2 complex
valued matrices, e.g.

unot =

[

0 1

1 0

]

, uhad = 1√
2

[

1 1

1 −1

]

and uphase φ =

[

1 0

0 e2πiφ

]

.

Shor in Haskell The Quantum IO Monad – p.9/27

Qubit Rotations

• Rotations are defined by unitary 2 by 2 complex
valued matrices, e.g.

unot =

[

0 1

1 0

]

, uhad = 1√
2

[

1 1

1 −1

]

and uphase φ =

[

1 0

0 e2πiφ

]

.

• using the type

type Rotation = ((Bool ,Bool)→ C)

Shor in Haskell The Quantum IO Monad – p.9/27

Qubit Rotations

• Rotations are defined by unitary 2 by 2 complex
valued matrices, e.g.

unot =

[

0 1

1 0

]

, uhad = 1√
2

[

1 1

1 −1

]

and uphase φ =

[

1 0

0 e2πiφ

]

.

• using the type

type Rotation = ((Bool ,Bool)→ C)

• which is extended to a member of the U type by

rot :: Qbit → Rotation → U

Shor in Haskell The Quantum IO Monad – p.9/27

Qubit Rotations

• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()

Shor in Haskell The Quantum IO Monad – p.10/27

Qubit Rotations

• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()

• So we could now create the state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉

which is an equal super-position of the single qubit
base states.

Shor in Haskell The Quantum IO Monad – p.10/27

Qubit Rotations

• In QIO, a unitary operator can be applied to the
current state using

applyU :: U → QIO ()

• So we could now create the state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉

which is an equal super-position of the single qubit
base states.

•
|+〉 :: QIO Qbit

|+〉 = do q ← |0〉

applyU (uhad q)

return q

Shor in Haskell The Quantum IO Monad – p.10/27

Measurement

• Quantum Mechanics tells us that we can’t tell which
arbitrary super-position a quantum system is in .

Shor in Haskell The Quantum IO Monad – p.11/27

Measurement

• Quantum Mechanics tells us that we can’t tell which
arbitrary super-position a quantum system is in .

• Upon measurement, the system will collapse into one
of the base states.

Shor in Haskell The Quantum IO Monad – p.11/27

Measurement

• Quantum Mechanics tells us that we can’t tell which
arbitrary super-position a quantum system is in .

• Upon measurement, the system will collapse into one
of the base states.

• The probability of each base state being measured is
equal to the square of the amplitude of that base state
within the super-position.

Shor in Haskell The Quantum IO Monad – p.11/27

Measurement

• Quantum Mechanics tells us that we can’t tell which
arbitrary super-position a quantum system is in .

• Upon measurement, the system will collapse into one
of the base states.

• The probability of each base state being measured is
equal to the square of the amplitude of that base state
within the super-position.

• This leads to the fact that measurements can cause
side-effects in the rest of the system.

Shor in Haskell The Quantum IO Monad – p.11/27

Measurement

• Quantum Mechanics tells us that we can’t tell which
arbitrary super-position a quantum system is in .

• Upon measurement, the system will collapse into one
of the base states.

• The probability of each base state being measured is
equal to the square of the amplitude of that base state
within the super-position.

• This leads to the fact that measurements can cause
side-effects in the rest of the system.

Shor in Haskell The Quantum IO Monad – p.11/27

Measurement

• Measurement in QIO is by use of

measQbit :: Qbit → QIO Bool

Shor in Haskell The Quantum IO Monad – p.12/27

Measurement

• Measurement in QIO is by use of

measQbit :: Qbit → QIO Bool

• We could now use the |+〉 state to create a random
boolean.

Shor in Haskell The Quantum IO Monad – p.12/27

Measurement

• Measurement in QIO is by use of

measQbit :: Qbit → QIO Bool

• We could now use the |+〉 state to create a random
boolean.

•
randomBool :: QIO Bool

randomBool = do q ← |+〉

c ← measQbit

return c

Shor in Haskell The Quantum IO Monad – p.12/27

Multiple Qubits...

• A 2-qubit system can be in a super-postion of the base
states |00〉 , |01〉 , |10〉 , and |11〉 .

Shor in Haskell The Quantum IO Monad – p.13/27

Multiple Qubits...

• A 2-qubit system can be in a super-postion of the base
states |00〉 , |01〉 , |10〉 , and |11〉 .

• For an n-qubit system, the state can occupy a
super-position of any of the 2n bit strings of length n.

Shor in Haskell The Quantum IO Monad – p.13/27

Multiple Qubits...

• A 2-qubit system can be in a super-postion of the base
states |00〉 , |01〉 , |10〉 , and |11〉 .

• For an n-qubit system, the state can occupy a
super-position of any of the 2n bit strings of length n.

• We still have the side-condition that the sum of the
squared amplitudes must equal 1 .

Shor in Haskell The Quantum IO Monad – p.13/27

Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

Shor in Haskell The Quantum IO Monad – p.14/27

Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

Shor in Haskell The Quantum IO Monad – p.14/27

Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

• We use • as the identity operator, and � for the
append operation.

Shor in Haskell The Quantum IO Monad – p.14/27

Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

• We use • as the identity operator, and � for the
append operation.

• It is possible to swap the position of 2 qubits

swap :: Qbit → Qbit → U

Shor in Haskell The Quantum IO Monad – p.14/27

Multiple Qubits...

• In QIO we can create multiple qubit states by
initialising each qubit and then applying some of our
unitary operators to them.

• Our U data-type consists of two; two-qubit unitary
operators, which (along with rotations) form a
Monoid that is complete for quantum computation.

• We use • as the identity operator, and � for the
append operation.

• It is possible to swap the position of 2 qubits

swap :: Qbit → Qbit → U

• and create conditional operations

cond :: Qbit → (Bool → U)→ U

Shor in Haskell The Quantum IO Monad – p.14/27

Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

Shor in Haskell The Quantum IO Monad – p.15/27

Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

• The Unitary aspect of U defines exactly that they are
reversible, and we provide the function urev :: U → U

which constructs the inverse.

Shor in Haskell The Quantum IO Monad – p.15/27

Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

• The Unitary aspect of U defines exactly that they are
reversible, and we provide the function urev :: U → U

which constructs the inverse.

• The No Cloning theorem tells us that we cannot create
a copy of an arbitrary quantum state.

Shor in Haskell The Quantum IO Monad – p.15/27

Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

• The Unitary aspect of U defines exactly that they are
reversible, and we provide the function urev :: U → U

which constructs the inverse.

• The No Cloning theorem tells us that we cannot create
a copy of an arbitrary quantum state.

• We can however “share” the state of one qubit with
another.

Shor in Haskell The Quantum IO Monad – p.15/27

Multiple Qubits...

• An example conditional statement would be

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else •)

• The Unitary aspect of U defines exactly that they are
reversible, and we provide the function urev :: U → U

which constructs the inverse.

• The No Cloning theorem tells us that we cannot create
a copy of an arbitrary quantum state.

• We can however “share” the state of one qubit with
another.

• e.g. from a state |φ〉 = α |0〉+ β |1〉
we can create the state |ψ〉 = α |00〉+ β |11〉 .

Shor in Haskell The Quantum IO Monad – p.15/27

Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

Shor in Haskell The Quantum IO Monad – p.16/27

Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

• We can now use this to create the bell state
1√
2
|00〉+ 1√

2
|11〉 from the |+〉 state.

Shor in Haskell The Quantum IO Monad – p.16/27

Multiple Qubits...

•
share :: Qbit → QIO Qbit

share qa = do qb ← |0〉

applyU (ifQ qa (unot qb))

return qb

• We can now use this to create the bell state
1√
2
|00〉+ 1√

2
|11〉 from the |+〉 state.

•
bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)

Shor in Haskell The Quantum IO Monad – p.16/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

• Meaning that the measurement has collapsed the
entire state into either |00〉 or |11〉 .

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

• Meaning that the measurement has collapsed the
entire state into either |00〉 or |11〉 .

• Measuring the first qubit, has the side-effect of also
collapsing the second qubit into one of its base states.

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

• Meaning that the measurement has collapsed the
entire state into either |00〉 or |11〉 .

• Measuring the first qubit, has the side-effect of also
collapsing the second qubit into one of its base states.

• In this example, the 2 qubits are Entangled . The state
of one depends on the state of the other.

Shor in Haskell The Quantum IO Monad – p.17/27

Measurement Side Effects

• lets now consider this 2-qubit bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

• What happens if we measure one of the qubits?

• With equal probability we’ll measure |0〉 or |1〉 .

• Meaning that the measurement has collapsed the
entire state into either |00〉 or |11〉 .

• Measuring the first qubit, has the side-effect of also
collapsing the second qubit into one of its base states.

• In this example, the 2 qubits are Entangled . The state
of one depends on the state of the other.

• In QIO, conditional statements are used to introduce
entanglement into a computation.

Shor in Haskell The Quantum IO Monad – p.17/27

Deutsch’s Algorithm

• We now have everything we need to start defining
quantum computations in Haskell. E.g. Deutsch’s
Algorithm

Shor in Haskell The Quantum IO Monad – p.18/27

Deutsch’s Algorithm

• We now have everything we need to start defining
quantum computations in Haskell. E.g. Deutsch’s
Algorithm

•
deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (cond x (λb →

if f b then unot y

else •)

applyU (uhad x)

measQbit x

Shor in Haskell The Quantum IO Monad – p.18/27

Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

Shor in Haskell The Quantum IO Monad – p.19/27

Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

• We could get our handy USB quantum register, and
just get it to evaluate the program for us...

Shor in Haskell The Quantum IO Monad – p.19/27

Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

• We could get our handy USB quantum register, and
just get it to evaluate the program for us...

• but it doesn’t exist yet!

Shor in Haskell The Quantum IO Monad – p.19/27

Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

• We could get our handy USB quantum register, and
just get it to evaluate the program for us...

• but it doesn’t exist yet!

• So, we also provide three evaluation functions for QIO
Programs

Shor in Haskell The Quantum IO Monad – p.19/27

Running Quantum Computations

• These QIO programs are Quantum Computations of
the given embedded type, but can we actually run or
evaluate these quantum computations?

• We could get our handy USB quantum register, and
just get it to evaluate the program for us...

• but it doesn’t exist yet!

• So, we also provide three evaluation functions for QIO
Programs

•

run :: QIO a → IO a

sim :: QIO a → Prob a

runC :: QIO a → a

Shor in Haskell The Quantum IO Monad – p.19/27

Running Quantum Computations

• e.g.

> run (deutsch ¬)

True

> sim (deutsch id)

[(True, 1.0)]

> run (deutsch (λx → True))

False

> sim (deutsch (λx → False))

[(False, 1.0)]

> sim randomBool

[(True, 0.5), (False, 0.5)]

Shor in Haskell The Quantum IO Monad – p.20/27

Quantum Data-types

• We don’t always want to think of quantum
computations simply as acting on qubits, for example,
it would be natural to think of Shor’s algorithm as
having the type shor :: Int → QIO Int .

Shor in Haskell The Quantum IO Monad – p.21/27

Quantum Data-types

• We don’t always want to think of quantum
computations simply as acting on qubits, for example,
it would be natural to think of Shor’s algorithm as
having the type shor :: Int → QIO Int .

• We decided to implement a class of Quantum
Data-types , that defines a relation between a classical
type, and a corresponding quantum version of that
type.

Shor in Haskell The Quantum IO Monad – p.21/27

Quantum Data-types

• We don’t always want to think of quantum
computations simply as acting on qubits, for example,
it would be natural to think of Shor’s algorithm as
having the type shor :: Int → QIO Int .

• We decided to implement a class of Quantum
Data-types , that defines a relation between a classical
type, and a corresponding quantum version of that
type.

•

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

condQ :: qa → (a → U)→ U

Shor in Haskell The Quantum IO Monad – p.21/27

Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

Shor in Haskell The Quantum IO Monad – p.22/27

Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

• We can also define pairs, lists...

Shor in Haskell The Quantum IO Monad – p.22/27

Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

• We can also define pairs, lists...

•

instance Qdata a qa ⇒ Qdata [a] [qa] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

condQ qs qsu = condQ ′ qs []

where condQ ′ [] xs = qsu xs

condQ ′ (a : as) xs = condQ a (λx → condQ ′ as (xs ++ [x]))

Shor in Haskell The Quantum IO Monad – p.22/27

Quantum Data-types

• The simplest instance of this class would be the
correspondance between boolean values and qubits,
which just uses the QIO constructors we have already
seen.

• We can also define pairs, lists...

•

instance Qdata a qa ⇒ Qdata [a] [qa] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

condQ qs qsu = condQ ′ qs []

where condQ ′ [] xs = qsu xs

condQ ′ (a : as) xs = condQ a (λx → condQ ′ as (xs ++ [x]))

• and a Quantum Integer , which converts an Int to a
(fixed-length) list of booleans, and defines a QInt as a
synonym for a list of qubits.

Shor in Haskell The Quantum IO Monad – p.22/27

More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.

Shor in Haskell The Quantum IO Monad – p.23/27

More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.

• The paper goes into much more detail about the
implementation of Shor’s algorithm and the QIO
evaluator.

Shor in Haskell The Quantum IO Monad – p.23/27

More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.

• The paper goes into much more detail about the
implementation of Shor’s algorithm and the QIO
evaluator.

• Shor’s algorithm required that we have a set of unitary
operators that can perform reversible arithmetic ,
specifically modular exponentiation.

Shor in Haskell The Quantum IO Monad – p.23/27

More QIO Programs

• We have implemented other Quantum Algorithms
using QIO, including Quantum Teleportation, and
Shor’s Algorithm.

• The paper goes into much more detail about the
implementation of Shor’s algorithm and the QIO
evaluator.

• Shor’s algorithm required that we have a set of unitary
operators that can perform reversible arithmetic ,
specifically modular exponentiation.

• Many of the arithmetic functions require auxilliary
qubits, so we have also added a unitary-let operation
ulet :: Bool → (Qbit → U)→ U that enables the
system to keep track of them.

Shor in Haskell The Quantum IO Monad – p.23/27

More QIO Programs

• Shor’s algorithm also requires a unitary operator that
performs the Quantum Fourier Transform , and details
of the implementation can also be found in the paper.

Shor in Haskell The Quantum IO Monad – p.24/27

More QIO Programs

• Shor’s algorithm also requires a unitary operator that
performs the Quantum Fourier Transform , and details
of the implementation can also be found in the paper.

• The Quantum Fourier Transform is essentially an
implementation of the discrete Fourier transform, that
can act on a quantum state, and is used in many
quantum algorithms.

Shor in Haskell The Quantum IO Monad – p.24/27

More QIO Programs

• Shor’s algorithm also requires a unitary operator that
performs the Quantum Fourier Transform , and details
of the implementation can also be found in the paper.

• The Quantum Fourier Transform is essentially an
implementation of the discrete Fourier transform, that
can act on a quantum state, and is used in many
quantum algorithms.

• It’s use in Shor’s algorithm is to find the order of a
modular exponentiation function that’s constructed
depending on the input.

Shor in Haskell The Quantum IO Monad – p.24/27

Problems?

• As it stands, conditionals can be created that aren’t
unitary.

Shor in Haskell The Quantum IO Monad – p.25/27

Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

Shor in Haskell The Quantum IO Monad – p.25/27

Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

Shor in Haskell The Quantum IO Monad – p.25/27

Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

Shor in Haskell The Quantum IO Monad – p.25/27

Problems?

• As it stands, conditionals can be created that aren’t
unitary.

•
notUnitary :: U

notUnitary = cond x (λx → if x then unot x else •)

• The given function always leaves the qubit x in the
state |0〉.

• A side condition for conditionals must be introduced,
that the branches of the conditional must not
reference the control qubit.

• Trying to run the notUnitary function will result in a
run-time error.

Shor in Haskell The Quantum IO Monad – p.25/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

Shor in Haskell The Quantum IO Monad – p.26/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

Shor in Haskell The Quantum IO Monad – p.26/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

Shor in Haskell The Quantum IO Monad – p.26/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

Shor in Haskell The Quantum IO Monad – p.26/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

Shor in Haskell The Quantum IO Monad – p.26/27

Side Conditions...

• The ulet constructor could easily give rise to
non-unitary behaviour...

• e.g. the temporary qubit could be left entangled with
the rest of the state.

• The side-condition imposed for ulet is that the
temporary qubit must be returned to its original state.

• It would also be possible to create a non-unitary single
qubit rotation.

• The side-condition for rotations is that they must be
unitary!

• Again, in both cases, failure to comply will result in a
run-time error.

Shor in Haskell The Quantum IO Monad – p.26/27

Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

Shor in Haskell The Quantum IO Monad – p.27/27

Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

Shor in Haskell The Quantum IO Monad – p.27/27

Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

• We are also looking at possibly extending QIO to be a
full language...

Shor in Haskell The Quantum IO Monad – p.27/27

Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

• We are also looking at possibly extending QIO to be a
full language...

• The current implementation of QIO is available online:
http://www.cs.nott.ac.uk/˜asg/QIO/

Shor in Haskell The Quantum IO Monad – p.27/27

Conclusions

• A Dependently-Typed implementation of QIO could
move the side conditions to the Type level...

• leaving a sound implementation that could be used to
start reasoning about quantum computations.

• We are also looking at possibly extending QIO to be a
full language...

• The current implementation of QIO is available online:
http://www.cs.nott.ac.uk/˜asg/QIO/

• Thank you!

Shor in Haskell The Quantum IO Monad – p.27/27

	Introduction
	Introduction
	Introduction
	Qubits
	Qubits
	Bloch Sphere
	Qubit Rotations
	Qubit Rotations
	Qubit Rotations
	Measurement
	Measurement
	Multiple Qubits...
	Multiple Qubits...
	Multiple Qubits...
	Multiple Qubits...
	Measurement Side Effects
	Deutsch's Algorithm
	Running Quantum Computations
	Running Quantum Computations
	Quantum Data-types
	Quantum Data-types
	More QIO Programs
	More QIO Programs
	Problems?
	Side Conditions...
	Conclusions

